Chen, J;Gannot, N;Li, X;Zhu, R;Zhang, C;Li, P;
PMID: 36522525 | DOI: 10.1007/s12264-022-00994-8
The parabrachial nucleus (PBN) integrates interoceptive and exteroceptive information to control various behavioral and physiological processes including breathing, emotion, and sleep/wake regulation through the neural circuits that connect to the forebrain and the brainstem. However, the precise identity and function of distinct PBN subpopulations are still largely unknown. Here, we leveraged molecular characterization, retrograde tracing, optogenetics, chemogenetics, and electrocortical recording approaches to identify a small subpopulation of neurotensin-expressing neurons in the PBN that largely project to the emotional control regions in the forebrain, rather than the medulla. Their activation induces freezing and anxiety-like behaviors, which in turn result in tachypnea. In addition, optogenetic and chemogenetic manipulations of these neurons revealed their function in promoting wakefulness and maintaining sleep architecture. We propose that these neurons comprise a PBN subpopulation with specific gene expression, connectivity, and function, which play essential roles in behavioral and physiological regulation.
Arend, R;Dholakia, J;Castro, C;Matulonis, U;Hamilton, E;Jackson, CG;LyBarger, K;Goodman, HM;Duska, LR;Mahdi, H;ElNaggar, AC;Kagey, MH;Liu, A;Piper, D;Barroilhet, LM;Bradley, W;Sachdev, J;Sirard, CA;O'Malley, DM;Birrer, M;
PMID: 37001446 | DOI: 10.1016/j.ygyno.2023.03.013
Dickkopf-1 (DKK1) is a Wnt signaling modulator promoting tumor growth, metastasis, angiogenesis, and immunosuppression by regulating innate immunity. DKK1 is over-expressed in gynecologic cancers and is associated with shortened survival. DKN-01 is a humanized monoclonal antibody with DKK1 neutralizing activity that may provide clinical benefit to patients whose tumors have overexpression of DKK1 or Wnt genetic alterations.We conducted an open-label, Phase 2 basket study with 2-stage design in patients with endometrial carcinoma (EC) and platinum-resistant/refractory epithelial ovarian cancer. DKN-01 was administered either as monotherapy or in combination with weekly paclitaxel at investigator's discretion. All patients underwent NGS testing prior to enrollment; tumor tissue was also tested for DKK1 expression by RNAscope pre-treatment and after cycle 1 if available. At least 50% of patients were required to have a Wnt signaling alteration either directly or tangentially. This publication reports results from the EC population overall and by DKK1-expression.DKN-01 monotherapy and in combination with paclitaxel was more effective in patients with high DKK1-expressing tumors compared to low-expressing tumors. DKN-01 monotherapy demonstrated an objective response rate [ORR] of 25.0% vs. 0%; disease control rate [DCR] of 62.5% vs. 6.7%; median progression-free survival [PFS] was 4.3 vs. 1.8 months, and overall survival [OS] was 11.0 vs. 8.2 months in DKK1-high vs DKK1-low patients. Similarly, DKN-01 in combination with paclitaxel demonstrated greater clinical activity in patients with DKK1-high tumors compared to DKK1-low tumors: DCR was 55% vs. 44%; median PFS was 5.4 vs. 1.8 months; and OS was 19.1 vs. 10.1 months. Wnt activating mutations correlated with higher DKK1 expression. DKN-01 was well tolerated as a monotherapy and in combination with paclitaxel.Collectively, data demonstrates promising clinical activity of a well-tolerated drug, DKN-01, in EC patients with high tumoral DKK1 expression which frequently corresponded to the presence of a Wnt activating mutation. Future development will focus on using DKN-01 in DKK1-high EC patients in combination with immunotherapy.
Danaf, J;da Silveira Scarpellini, C;Montandon, G;
PMID: 37089428 | DOI: 10.3389/fphys.2023.1043581
Opioid medications are the mainstay of pain management but present substantial side-effects such as respiratory depression which can be lethal with overdose. Most opioid drugs, such as fentanyl, act on opioid receptors such as the G-protein-coupled µ-opioid receptors (MOR). G-protein-coupled receptors activate pertussis toxin-sensitive G-proteins to inhibit neuronal activity. Binding of opioid ligands to MOR and subsequent activation G proteins βγ is modulated by regulator of G-protein signaling (RGS). The roles of G-proteins βγ and RGS in MOR-mediated inhibition of the respiratory network are not known. Using rodent models to pharmacologically modulate G-protein signaling, we aim to determine the roles of βγ G-proteins and RGS4. We showed that inhibition of βγ G-proteins using gallein perfused in the brainstem circuits regulating respiratory depression by opioid drugs results in complete reversal of respiratory depression. Blocking of RGS4 using CCG55014 did not change the respiratory depression induced by MOR activation despite co-expression of RGS4 and MORs in the brainstem. Our results suggest that neuronal inhibition by opioid drugs is mediated by G-proteins, but not by RGS4, which supports the concept that βγ G-proteins could be molecular targets to develop opioid overdose antidotes without the risks of re-narcotization often found with highly potent opioid drugs. On the other hand, RGS4 mediates opioid analgesia, but not respiratory depression, and RGS4 may be molecular targets to develop pain therapies without respiratory liability.
Huo, J;Du, F;Duan, K;Yin, G;Liu, X;Ma, Q;Dong, D;Sun, M;Hao, M;Su, D;Huang, T;Ke, J;Lai, S;Zhang, Z;Guo, C;Sun, Y;Cheng, L;
PMID: 36952340 | DOI: 10.1016/j.celrep.2023.112300
Mechanical allodynia (MA) represents one prevalent symptom of chronic pain. Previously we and others have identified spinal and brain circuits that transmit or modulate the initial establishment of MA. However, brain-derived descending pathways that control the laterality and duration of MA are still poorly understood. Here we report that the contralateral brain-to-spinal circuits, from Oprm1 neurons in the lateral parabrachial nucleus (lPBNOprm1), via Pdyn neurons in the dorsal medial regions of hypothalamus (dmHPdyn), to the spinal dorsal horn (SDH), act to prevent nerve injury from inducing contralateral MA and reduce the duration of bilateral MA induced by capsaicin. Ablating/silencing dmH-projecting lPBNOprm1 neurons or SDH-projecting dmHPdyn neurons, deleting Dyn peptide from dmH, or blocking spinal κ-opioid receptors all led to long-lasting bilateral MA. Conversely, activation of dmHPdyn neurons or their axonal terminals in SDH can suppress sustained bilateral MA induced by lPBN lesion.
Ochandarena, NE;Niehaus, J;Tassou, A;Scherrer, G;
PMID: 37271281 | DOI: 10.1016/j.neuropharm.2023.109597
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.