ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Am J Physiol Renal Physiol.
2017 Apr 01
Herrera M, Söderberg M, Sabirsh A, Valastro B, Mölne J, Santamaria B, Valverde AM, Guionaud S, Heasman S, Bigley A, Jermutus L, Rondinone C, Coghlan M, Baker D, Quinn CM.
PMID: 27440778 | DOI: 10.1152/ajprenal.00179.2016
Diabetic nephropathy (DN) remains an unmet medical challenge as its prevalence is projected to continue to increase and specific medicines for treatment remain undeveloped. Activation of the immune system, in particular T-cells, is emerging as a possible mechanism underlying DN disease progression in humans and animal models. We hypothesized that inhibition of T-cell activation will ameliorate DN. Interaction of B7-1 (CD80) on the surface of antigen presenting cells with its binding partners, CTLA4 (CD152) and CD28 on T-cells, is essential for T-cell activation. In this study we used the soluble CTLA4-Fc fusion protein Abatacept to block cell surface B7-1, preventing the cellular interaction and inhibiting T-cell activation. When Abatacept was dosed in an animal model of diabetes-induced albuminuria, it reduced albuminuria in both prevention and intervention modes. The number of T-cells infiltrating the kidneys of DN animals correlated with the degree of albuminuria, and treatment with Abatacept reduced the number of renal T-cells. As B7-1 induction has been recently proposed to underlie podocyte damage in DN, Abatacept could be efficacious in DN by protecting podocytes. However, this does not appear to be the case as B7-1 was not expressed in 1) kidneys of DN animals; 2) stimulated human podocytes in culture; or 3) glomeruli of DN patients. We conclude that Abatacept ameliorates DN by blocking systemic T-cell activation and not by interacting with podocytes.
Diabetes.
2018 Jun 27
Xin Y, Gutierrez GD, Okamoto H, Kim J, Lee AH, Adler C, Ni M, Yancopoulos GD, Murphy AJ, Gromada J.
PMID: 29950394 | DOI: 10.2337/db18-0365
Proinsulin is a misfolding-prone protein making its biosynthesis in the endoplasmic reticulum (ER) a stressful event. Pancreatic β-cells overcome ER stress by activating the unfolded protein response (UPR) and reducing insulin production. This suggests that β-cells transition between periods of high insulin biosynthesis and UPR-mediated recovery from cellular stress. We now report the pseudotime ordering of single non-diabetic human β-cells detected by large-scale RNA sequencing. We identified major states with 1) low UPR and low insulin gene expression, 2) low UPR and high insulin gene expression or 3) high UPR and low insulin gene expression. The latter state was enriched for proliferating cells. Stressed human β-cells do not dedifferentiate and show little propensity for apoptosis. These data suggest that human β-cells transition between states with high rates of biosynthesis to fulfill the body's insulin requirements to maintain normal blood glucose levels and UPR-mediated recovery from ER stress due to high insulin production.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com