ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nature.
2018 Oct 08
Biehs B, Dijkgraaf GJP, Piskol R, Alicke B, Boumahdi S, Peale F, Gould SE, de Sauvage FJ.
PMID: 30297801 | DOI: 10.1038/s41586-018-0596-y
Despite the efficacy of Hedgehog pathway inhibitors in the treatment of basal cell carcinoma (BCC)1, residual disease persists in some patients and may contribute to relapse when treatment is discontinued2. Here, to study the effect of the Smoothened inhibitor vismodegib on tumour clearance, we have used a Ptch1-Trp53 mouse model of BCC3 and found that mice treated with vismodegib harbour quiescent residual tumours that regrow upon cessation of treatment. Profiling experiments revealed that residual BCCs initiate a transcriptional program that closely resembles that of stem cells of the interfollicular epidermis and isthmus, whereas untreated BCCs are more similar to the hair follicle bulge. This cell identity switch was enabled by a mostly permissive chromatin state accompanied by rapid Wnt pathway activation and reprogramming of super enhancers to drive activation of key transcription factors involved in cellular identity. Accordingly, treatment of BCC with both vismodegib and a Wnt pathway inhibitor reduced the residual tumour burden and enhanced differentiation. Our study identifies a resistance mechanism in which tumour cells evade treatment by adopting an alternative identity that does not rely on the original oncogenic driver for survival.
Cell Rep.
2019 Feb 26
Antas P, Novellasdemunt L, Kucharska A, Massie I, Carvalho J, Oukrif D, Nye E, Novelli M, Li VSW.
PMID: 30811977 | DOI: 10.1016/j.celrep.2019.01.110
Wnt signals at the base of mammalian crypts play a pivotal role in intestinal stem cell (ISC) homeostasis, whereas aberrant Wnt activation causes colon cancer. Precise control of Wnt signal strength is governed by a number of negative inhibitory mechanisms acting at distinctlevels of the cascade. Here, we identify the Wnt negative regulatory role of Sh3bp4 in the intestinal crypt. We show that the loss of Sh3bp4 increases ISC and Paneth cell numbers in murine intestine and accelerates adenoma development in Apcmin mice. Mechanistically, human SH3BP4 inhibits Wnt signaling downstream of β-catenin phosphorylation and ubiquitination. This Wnt inhibitory role is dependent on the ZU5 domain of SH3BP4. We further demonstrate that SH3BP4 is expressed at the perinuclear region to restrict nuclear localization of β-catenin. Our data uncover the tumor-suppressive role of SH3BP4 that functions as a negative feedback regulator of Wnt signaling through modulating β-catenin's subcellular localization.
Cell Stem Cell.
2019 Feb 28
Johansson J, Naszai M, Hodder MC, Pickering KA, Miller BW, Ridgway RA, Yu Y, Peschard P, Brachmann S, Campbell AD, Cordero JB, Sansom OJ.
PMID: 30853556 | DOI: 10.1016/j.stem.2019.02.002
Ral GTPases are RAS effector molecules and by implication a potential therapeutic target for RAS mutant cancer. However, very little is known about their roles in stem cells and tissue homeostasis. Using Drosophila, we identified expression of RalA in intestinal stem cells (ISCs) and progenitor cells of the fly midgut. RalA was required within ISCs for efficient regeneration downstream of Wnt signaling. Within the murine intestine, genetic deletion of either mammalian ortholog, Rala or Ralb, reduced ISC function and Lgr5 positivity, drove hypersensitivity to Wnt inhibition, and impaired tissue regeneration following damage. Ablation of both genes resulted in rapid crypt death. Mechanistically, RALA and RALB were required for efficient internalization of the Wnt receptor Frizzled-7. Together, we identify a conserved role for RAL GTPases in the promotion of optimal Wnt signaling, which defines ISC number and regenerative potential.
Disease models & mechanisms
2023 Apr 27
Lyraki, R;Grabek, A;Tison, A;Weerasinghe-Arachchige, LC;Peitzsch, M;Bechman, N;Youssef, SA;de Bruin, A;Bakker, ERM;Claessens, F;Chaboissier, MC;Schedl, A;
PMID: 37102205 | DOI: 10.1242/dmm.050053
Cell death discovery
2023 Mar 25
Mukhopadhyay, B;Holovac, K;Schuebel, K;Mukhopadhyay, P;Cinar, R;Iyer, S;Marietta, C;Goldman, D;Kunos, G;
PMID: 36966147 | DOI: 10.1038/s41420-023-01400-6
Neuron
2022 Dec 21
Vieira, JR;Shah, B;Dupraz, S;Paredes, I;Himmels, P;Schermann, G;Adler, H;Motta, A;Gärtner, L;Navarro-Aragall, A;Ioannou, E;Dyukova, E;Bonnavion, R;Fischer, A;Bonanomi, D;Bradke, F;Ruhrberg, C;Ruiz de Almodóvar, C;
PMID: 36549270 | DOI: 10.1016/j.neuron.2022.12.005
Cell reports methods
2022 Oct 24
Ali Marandi Ghoddousi, R;Magalong, VM;Kamitakahara, AK;Levitt, P;
PMID: 36313803 | DOI: 10.1016/j.crmeth.2022.100316
Cell reports
2022 Apr 05
Gao, F;Li, C;Danopoulos, S;Al Alam, D;Peinado, N;Webster, S;Borok, Z;Kohbodi, GA;Bellusci, S;Minoo, P;
PMID: 35385750 | DOI: 10.1016/j.celrep.2022.110608
Cell reports
2022 Jan 11
Han, Y;Villarreal-Ponce, A;Gutierrez, G;Nguyen, Q;Sun, P;Wu, T;Sui, B;Berx, G;Brabletz, T;Kessenbrock, K;Zeng, YA;Watanabe, K;Dai, X;
PMID: 35021086 | DOI: 10.1016/j.celrep.2021.110240
Cell reports
2021 Sep 28
Milon, B;Shulman, ED;So, KS;Cederroth, CR;Lipford, EL;Sperber, M;Sellon, JB;Sarlus, H;Pregernig, G;Shuster, B;Song, Y;Mitra, S;Orvis, J;Margulies, Z;Ogawa, Y;Shults, C;Depireux, DA;Palermo, AT;Canlon, B;Burns, J;Elkon, R;Hertzano, R;
PMID: 34592158 | DOI: 10.1016/j.celrep.2021.109758
Hepatology
2017 Oct 23
Leibing T, Géraud C, Augustin I, Boutros M, Augustin HG, Okun JG, Langhans CD, Zierow J, Wohlfeil SA, Olsavszky V, Schledzewski K, Goerdt S, Koch PS.
PMID: 29059455 | DOI: 10.1002/hep.29613
Postnatal liver development is characterized by hepatocyte growth, proliferation and functional maturation. Notably, canonical Wnt signaling in hepatocytes has been identified as an important regulator of final adult liver size and metabolic liver zonation. The cellular origin of Wnt ligands responsible for homeostatic liver/body weight ratio remained unclear, which was also attributable to a lack of suitable endothelial Cre driver mice. To comprehensively analyze the effects of hepatic angiocrine Wnt signaling on liver development and metabolic functions, we used endothelial subtype-specific Stab2-Cre driver mice to delete Wls from hepatic endothelial cells (HEC). The resultant Stab2-Cretg/wt;Wlsfl/fl (Wls-HECKO) mice were viable but showed a significantly reduced liver/body weight ratio. Specifically, ablation of angiocrine Wnt signaling impaired metabolic zonation in the liver, as shown by loss of pericentral, β-catenin-dependent target genes such as Glutamine Synthase (Glul), RhBg, Axin2 and CYP2E1 as well as by extended expression of periportal genes such as Arginase 1 (Arg1). Furthermore, endothelial subtype-specific expression of a c-terminally YFP-tagged Wls fusion protein in Wls-HECKO mice (Stab2-Cretg/wt ;Wlsfl/fl;Rosa26:Wls-YFPfl/wt [Wls-rescue]) restored metabolic liver zonation. Interestingly, lipid metabolism was altered in Wls-HECKO miceexhibiting significantly reduced plasma cholesterol levels, while maintaining normal plasma triglyceride and blood glucose concentrations. On the contrary, zonal expression of Endomucin, LYVE1 and other markers of HEC heterogeneity were not altered in Wls-HECKO livers.
Nature
2022 Nov 01
Kathe, C;Skinnider, MA;Hutson, TH;Regazzi, N;Gautier, M;Demesmaeker, R;Komi, S;Ceto, S;James, ND;Cho, N;Baud, L;Galan, K;Matson, KJE;Rowald, A;Kim, K;Wang, R;Minassian, K;Prior, JO;Asboth, L;Barraud, Q;Lacour, SP;Levine, AJ;Wagner, F;Bloch, J;Squair, JW;Courtine, G;
PMID: 36352232 | DOI: 10.1038/s41586-022-05385-7
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com