Wendisch, D;Dietrich, O;Mari, T;von Stillfried, S;Ibarra, I;Mittermaier, M;Mache, C;Chua, R;Knoll, R;Timm, S;Brumhard, S;Krammer, T;Zauber, H;Hiller, A;Pascual-Reguant, A;Mothes, R;Bülow, R;Schulze, J;Leipold, A;Djudjaj, S;Erhard, F;Geffers, R;Pott, F;Kazmierski, J;Radke, J;Pergantis, P;Baßler, K;Conrad, C;Aschenbrenner, A;Sawitzki, B;Landthaler, M;Wyler, E;Horst, D;Hippenstiel, S;Hocke, A;Heppner, F;Uhrig, A;Garcia, C;Machleidt, F;Herold, S;Elezkurtaj, S;Thibeault, C;Witzenrath, M;Cochain, C;Suttorp, N;Drosten, C;Goffinet, C;Kurth, F;Schultze, J;Radbruch, H;Ochs, M;Eils, R;Müller-Redetzky, H;Hauser, A;Luecken, M;Theis, F;Conrad, C;Wolff, T;Boor, P;Selbach, M;Saliba, A;Sander, L;
| DOI: 10.1016/j.cell.2021.11.033
COVID-19-induced ‘acute respiratory distress syndrome’ (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyzed pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single cell genomics, immunohistology and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not Influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.
Peripheral and lung resident memory T cell responses against SARS-CoV-2
Grau-Expósito, J;Sánchez-Gaona, N;Massana, N;Suppi, M;Astorga-Gamaza, A;Perea, D;Rosado, J;Falcó, A;Kirkegaard, C;Torrella, A;Planas, B;Navarro, J;Suanzes, P;Álvarez-Sierra, D;Ayora, A;Sansano, I;Esperalba, J;Andrés, C;Antón, A;Ramón Y Cajal, S;Almirante, B;Pujol-Borrell, R;Falcó, V;Burgos, J;Buzón, MJ;Genescà, M;
PMID: 34021148 | DOI: 10.1038/s41467-021-23333-3
Resident memory T cells (TRM) positioned within the respiratory tract are probably required to limit SARS-CoV-2 spread and COVID-19. Importantly, TRM are mostly non-recirculating, which reduces the window of opportunity to examine these cells in the blood as they move to the lung parenchyma. Here, we identify circulating virus-specific T cell responses during acute infection with functional, migratory and apoptotic patterns modulated by viral proteins and associated with clinical outcome. Disease severity is associated predominantly with IFNγ and IL-4 responses, increased responses against S peptides and apoptosis, whereas non-hospitalized patients have increased IL-12p70 levels, degranulation in response to N peptides and SARS-CoV-2-specific CCR7+ T cells secreting IL-10. In convalescent patients, lung-TRM are frequently detected even 10 months after initial infection, in which contemporaneous blood does not reflect tissue-resident profiles. Our study highlights a balanced anti-inflammatory antiviral response associated with a better outcome and persisting TRM cells as important for future protection against SARS-CoV-2 infection.
Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection
Diao, B;Wang, C;Wang, R;Feng, Z;Zhang, J;Yang, H;Tan, Y;Wang, H;Wang, C;Liu, L;Liu, Y;Liu, Y;Wang, G;Yuan, Z;Hou, X;Ren, L;Wu, Y;Chen, Y;
PMID: 33947851 | DOI: 10.1038/s41467-021-22781-1
It is unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can directly infect human kidney, thus leading to acute kidney injury (AKI). Here, we perform a retrospective analysis of clinical parameters from 85 patients with laboratory-confirmed coronavirus disease 2019 (COVID-19); moreover, kidney histopathology from six additional COVID-19 patients with post-mortem examinations was performed. We find that 27% (23/85) of patients exhibited AKI. The elderly patients and cases with comorbidities (hypertension and heart failure) are more prone to develop AKI. Haematoxylin & eosin staining shows that the kidneys from COVID-19 autopsies have moderate to severe tubular damage. In situ hybridization assays illustrate that viral RNA accumulates in tubules. Immunohistochemistry shows nucleocapsid and spike protein deposits in the tubules, and immunofluorescence double staining shows that both antigens are restricted to the angiotensin converting enzyme-II-positive tubules. SARS-CoV-2 infection triggers the expression of hypoxic damage-associated molecules, including DP2 and prostaglandin D synthase in infected tubules. Moreover, it enhances CD68+ macrophages infiltration into the tubulointerstitium, and complement C5b-9 deposition on tubules is also observed. These results suggest that SARS-CoV-2 directly infects human kidney to mediate tubular pathogenesis and AKI.
The Journal of allergy and clinical immunology
Riller, Q;Fourgeaud, J;Bruneau, J;De Ravin, SS;Smith, G;Fusaro, M;Meriem, S;Magerus, A;Luka, M;Abdessalem, G;Lhermitte, L;Jamet, A;Six, E;Magnani, A;Castelle, M;Lévy, R;Lecuit, MM;Fournier, B;Winter, S;Semeraro, M;Pinto, G;Abid, H;Mahlaoui, N;Cheikh, N;Florkin, B;Frange, P;Jeziorski, E;Suarez, F;Sarrot-Reynauld, F;Nouar, D;Debray, D;Lacaille, F;Picard, C;Pérot, P;Regnault, B;Da Rocha, N;de Cevins, C;Delage, L;Pérot, BP;Vinit, A;Carbone, F;Brunaud, C;Marchais, M;Stolzenberg, MC;Asnafi, V;Molina, T;Rieux-Laucat, F;Notarangelo, LD;Pittaluga, S;Jais, JP;Moshous, D;Blanche, S;Malech, H;Eloit, M;Cavazzana, M;Fischer, A;Ménager, MM;Neven, B;
PMID: 36638922 | DOI: 10.1016/j.jaci.2022.12.822
Allogenic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) are potentially curative treatments for severe combined immunodeficiency (SCID). Late-onset post-treatment manifestations (such as persistent hepatitis) are not uncommon.To characterize the prevalence and pathophysiology of persistent hepatitis in transplanted SCID patients (SCIDH+) and to evaluate risk factors and treatments.We used a variety of techniques (including pathology assessments, metagenomics, single-cell transcriptomics, and cytometry by time of flight) to perform an in-depth study of different tissues from SCIDH+ patients and corresponding asymptomatic similarly transplanted SCID patients (without hepatitis, SCIDH-).Eleven patients developed persistent hepatitis (median of 6 years after HSCT or GT). This condition was associated with the chronic detection of enteric viruses (human Aichi virus, norovirus and sapovirus) in liver and/or stools, which were not found in stools SCIDH- (n=12). Multi-omics analysis identified an expansion of effector memory CD8+ T cells with a high type I and II interferon signatures. Hepatitis was associated with absence of myeloablation during conditioning, split chimerism and defective B cell function, representing 25% of the 44 SCID patients having these characteristics. Partially myeloablative re-transplantation or GT of patients with this condition (which we have named "enteric virus infection associated with hepatitis" (EVAH)) led to the reconstitution of T and B cell immunity and remission of hepatitis, concomitantly to viral clearance in 5 patients.EVAH is associated with chronic enteric viral infection and immune dysregulation and is an important risk for transplanted SCID patients with defective B cell function.
Stenton, S;McPartland, J;Shukla, R;Turner, K;Marton, T;Hargitai, B;Bamber, A;Pryce, J;Peres, CL;Burguess, N;Wagner, B;Ciolka, B;Simmons, W;Hurrell, D;Sekar, T;Moldovan, C;Trayers, C;Bryant, V;Palm, L;Cohen, MC;
PMID: 35465646 | DOI: 10.1016/j.eclinm.2022.101389
Pregnant women with SARS-CoV-2 infection experience higher rates of stillbirth and preterm birth. A unique pattern of chronic histiocytic intervillositis (CHI) and/or massive perivillous fibrin deposition (MPFD) has emerged, coined as SARS-CoV-2 placentitis.The aim of this study was to describe a cohort of placentas diagnosed with SARS-CoV-2 placentitis during October 2020-March 2021. Cases with a histological diagnosis of SARS-CoV-2 placentitis and confirmatory immunohistochemistry were reported. Maternal demographic data, pregnancy outcomes and placental findings were collected.59 mothers delivered 61 infants with SARS-CoV-2 placentitis. The gestational age ranged from 19 to 41 weeks with most cases (78.6%) being third trimester. 30 infants (49.1%) were stillborn or late miscarriages. Obese mothers had higher rates of pregnancy loss when compared with those with a BMI <30 [67% (10/15) versus 41% (14/34)]. 47/59 (79.7%) mothers had a positive SARS-CoV-2 PCR test either at the time of labour or in the months before, of which 12 (25.5%) were reported to be asymptomatic. Ten reported only CHI, two cases showed MPFD only and in 48 placentas both CHI and MPFD was described.SARS-CoV2 placentitis is a distinct entity associated with increased risk of pregnancy loss, particularly in the third trimester. Women can be completely asymptomatic and still experience severe placentitis. Unlike 'classical' MPFD, placentas with SARS-CoV-2 are generally normal in size with adequate fetoplacental weight ratios. Further work should establish the significance of the timing of maternal SARS-CoV-2 infection and placentitis, the significance of SARS-CoV2 variants, and rates of vertical transmission associated with this pattern of placental inflammation.There was not funding associated with this study.
Liver histopathology in COVID-19 patients: A mono-Institutional series of liver biopsies and autopsy specimens
Pathology, research and practice
Fassan, M;Mescoli, C;Sbaraglia, M;Guzzardo, V;Russo, FP;Fabris, R;Trevenzoli, M;Pelizzaro, F;Cattelan, AM;Basso, C;Navalesi, P;Farinati, F;Vettor, R;Dei Tos, AP;
PMID: 33932720 | DOI: 10.1016/j.prp.2021.153451
Few studies have focused on COVID-19 patients' hepatic histopathological features. Many of the described morphological landscapes are non-specific and possibly due to other comorbidities or to Sars-CoV-2-related therapies. We describe the hepatic histopathological findings of 3 liver biopsies obtained from living COVID-19 patients in which active SARS-CoV-2 infection was molecularly confirmed and biopsied because of significant alterations of liver function tests and 25 livers analyzed during COVID-19-related autopsies. Main histopathological findings were (i) the absence of significant biliary tree or vascular damages, (ii) mild/absent lymphocytic hepatitis; (iii) activation of (pigmented) Kupffer cells, (iv) hepatocellular regenerative changes, (v) the presence of steatosis, (vi) sinusoidal ectasia, micro-thrombosis and acinar atrophy in autopsy specimens No viral particle actively infecting the hepatic or endothelial cells was detected at in situ hybridization. The morphological features observed within the hepatic parenchyma are not specific and should be considered as the result of an indirect insult resulting from the viral infection or the adopted therapeutic protocols.
Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell
Puray-Chavez, M;LaPak, KM;Schrank, TP;Elliott, JL;Bhatt, DP;Agajanian, MJ;Jasuja, R;Lawson, DQ;Davis, K;Rothlauf, PW;Liu, Z;Jo, H;Lee, N;Tenneti, K;Eschbach, JE;Shema Mugisha, C;Cousins, EM;Cloer, EW;Vuong, HR;VanBlargan, LA;Bailey, AL;Gilchuk, P;Crowe, JE;Diamond, MS;Hayes, DN;Whelan, SPJ;Horani, A;Brody, SL;Goldfarb, D;Major, MB;Kutluay, SB;
PMID: 34214467 | DOI: 10.1016/j.celrep.2021.109364
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.
Molecular Pathology Analysis of SARS-CoV-2 in Syncytiotrophoblast and Hofbauer Cells in Placenta from a Pregnant Woman and Fetus with COVID-19
Pathogens (Basel, Switzerland)
Morotti, D;Cadamuro, M;Rigoli, E;Sonzogni, A;Gianatti, A;Parolin, C;Patanè, L;Schwartz, DA;
PMID: 33920814 | DOI: 10.3390/pathogens10040479
A small number of neonates delivered to women with SARS-CoV-2 infection have been found to become infected through intrauterine transplacental transmission. These cases are associated with a group of unusual placental pathology abnormalities that include chronic histiocytic intervillositis, syncytiotrophoblast necrosis, and positivity of the syncytiotrophoblast for SARS-CoV-2 antigen or RNA. Hofbauer cells constitute a heterogeneous group of immunologically active macrophages that have been involved in transplacental infections that include such viral agents as Zika virus and human immunodeficiency virus. The role of Hofbauer cells in placental infection with SARS-CoV-2 and maternal-fetal transmission is unknown. This study uses molecular pathology techniques to evaluate the placenta from a neonate infected with SARS-CoV-2 via the transplacental route to determine whether Hofbauer cells have evidence of infection. We found that the placenta had chronic histiocytic intervillositis and syncytiotrophoblast necrosis, with the syncytiotrophoblast demonstrating intense positive staining for SARS-CoV-2. Immunohistochemistry using the macrophage marker CD163, SARS-CoV-2 nucleocapsid protein, and double staining for SARS-CoV-2 with RNAscope and anti-CD163 antibody, revealed that no demonstrable virus could be identified within Hofbauer cells, despite these cells closely approaching the basement membrane zone of the infected trophoblast. Unlike some other viruses, there was no evidence from this transmitting placenta for infection of Hofbauer cells with SARS-CoV-2.
Gajewski, T;Rouhani, S;Trujillo, J;Pyzer, A;Yu, J;Fessler, J;Cabanov, A;Higgs, E;Cron, K;Zha, Y;Lu, Y;Bloodworth, J;Abasiyanik, M;Okrah, S;Flood, B;Hatogai, K;Leung, M;Pezeshk, A;Kozloff, L;Reschke, R;Strohbehn, G;Chervin, CS;Kumar, M;Schrantz, S;Madariaga, ML;Beavis, K;Yeo, KT;Sweis, R;Segal, J;Tay, S;Izumchenko, E;Mueller, J;Chen, L;
PMID: 34845442 | DOI: 10.21203/rs.3.rs-1083825/v1
The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.
Bewley, D;Lee, J;Popescu, O;Oviedo, A;
| DOI: 10.7759/cureus.20833
* Back * Academic Departments * Alabama College of Osteopathic ... [/channels/acom] * Annals of Simulation [/channels/simulation-archives] * Aurora Breast Health Proceedings [/channels/aurora] * Baylor Scott & White Medical Ce ... [/channels/bsw-neuro] * California Institute of Behavio ... [/channels/cibnp] * Contemporary Reviews in Neurolo ... [/channels/crnn] * Dalhousie Emergency Medicine [/channels/dalhousie-em] * FLAGSHIP: Medical Scholarly Pro ... [/channels/flagship] * Houston Methodist Neurosurgery [/channels/methodist-neuro] * Liberty Medicine Research Channel [/channels/lucom] * Marcus Neuroscience Institute [/channels/marcus-neuro] * Medicine-Pediatrics Academic Ch ... [/channels/med-peds] * Military Medical Simulation [/channels/military-medical-sim] * Modern Medical Educator [/channels/mme] * NB Social Pediatrics Research [/channels/nbspr] * NEMA Research Group [/channels/nema] * Paolo Procacci Foundation [/channels/ppf] * Penn State Neurosurgery [/channels/psuneuro] * Research Update Organization [/channels/researchupdate] * Sinai Chicago Research [/channels/scr] * Stanford Neurosurgery [/channels/su-neurosurgery] * The Florida Medical Student Res ... [/channels/fmsr] * UCSF Neurological Surgery [/channels/ucsf-neurosurgery] * UCSF Surgical Neuroanatomy Coll ... [/channels/sbcvl] * University of Florida-Jacksonvi ... [/channels/jax-neuro] * University of Louisville Neuros ... [/channels/ulneuro] * University of Munich Neurology [/channels/munich-neuro]
Favre, G;Mazzetti, S;Gengler, C;Bertelli, C;Schneider, J;Laubscher, B;Capoccia, R;Pakniyat, F;Ben Jazia, I;Eggel-Hort, B;de Leval, L;Pomar, L;Greub, G;Baud, D;Giannoni, E;
PMID: 34960786 | DOI: 10.3390/v13122517
Neonatal COVID-19 is rare and mainly results from postnatal transmission. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), however, can infect the placenta and compromise its function. We present two cases of decreased fetal movements and abnormal fetal heart rhythm 5 days after mild maternal COVID-19, requiring emergency caesarean section at 29 + 3 and 32 + 1 weeks of gestation, and leading to brain injury. Placental examination revealed extensive and multifocal chronic intervillositis, with intense cytoplasmic positivity for SARS-CoV-2 spike antibody and SARS-CoV-2 detection by RT-qPCR. Vertical transmission was confirmed in one case, and both neonates developed extensive cystic peri-ventricular leukomalacia.
Gaglia, G;Burger, ML;Ritch, CC;Rammos, D;Dai, Y;Crossland, GE;Tavana, SZ;Warchol, S;Jaeger, AM;Naranjo, S;Coy, S;Nirmal, AJ;Krueger, R;Lin, JR;Pfister, H;Sorger, PK;Jacks, T;Santagata, S;
PMID: 37059105 | DOI: 10.1016/j.ccell.2023.03.015
Lymphocytes are key for immune surveillance of tumors, but our understanding of the spatial organization and physical interactions that facilitate lymphocyte anti-cancer functions is limited. We used multiplexed imaging, quantitative spatial analysis, and machine learning to create high-definition maps of lung tumors from a Kras/Trp53-mutant mouse model and human resections. Networks of interacting lymphocytes ("lymphonets") emerged as a distinctive feature of the anti-cancer immune response. Lymphonets nucleated from small T cell clusters and incorporated B cells with increasing size. CXCR3-mediated trafficking modulated lymphonet size and number, but T cell antigen expression directed intratumoral localization. Lymphonets preferentially harbored TCF1+ PD-1+ progenitor CD8+ T cells involved in responses to immune checkpoint blockade (ICB) therapy. Upon treatment of mice with ICB or an antigen-targeted vaccine, lymphonets retained progenitor and gained cytotoxic CD8+ T cell populations, likely via progenitor differentiation. These data show that lymphonets create a spatial environment supportive of CD8+ T cell anti-tumor responses.