Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (34)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • (-) Remove Ccl2 filter Ccl2 (24)

Product

  • RNAscope Multiplex Fluorescent Assay (8) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (7) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope (5) Apply RNAscope filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope Fluorescent Multiplex Assay (3) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • Neuroscience (11) Apply Neuroscience filter
  • Cancer (6) Apply Cancer filter
  • Inflammation (6) Apply Inflammation filter
  • Infectious Disease (5) Apply Infectious Disease filter
  • Metabolism (4) Apply Metabolism filter
  • Obesity (3) Apply Obesity filter
  • Memory (2) Apply Memory filter
  • Aging (1) Apply Aging filter
  • Chronic Kidney Disease (1) Apply Chronic Kidney Disease filter
  • Covid (1) Apply Covid filter
  • Development (1) Apply Development filter
  • diabetes (1) Apply diabetes filter
  • Eyes (1) Apply Eyes filter
  • Infectious Disease: West Nile Virus (1) Apply Infectious Disease: West Nile Virus filter
  • Kidney (1) Apply Kidney filter
  • miRNAs (1) Apply miRNAs filter
  • Other (1) Apply Other filter
  • Other: Immunology (1) Apply Other: Immunology filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Stress (1) Apply Other: Stress filter
  • Primary Sjögren’s syndrome (1) Apply Primary Sjögren’s syndrome filter
  • Reproductive Biology (1) Apply Reproductive Biology filter
  • Single Cell (1) Apply Single Cell filter
  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (34) Apply Publications filter
γδ T cells and the immune response to respiratory syncytial virus infection.

Vet Immunol Immunopathol.

2016 Feb 21

McGill JL, Sacco RE.
PMID: 26923879 | DOI: 10.1016/j.vetimm.2016.02.012

γδ T cells are a subset of nonconventional T cells that play a critical role in bridging the innate and adaptive arms of the immune system. γδ T cells are particularly abundant in ruminant species and may constitute up to 60% of the circulating lymphocyte pool in young cattle. The frequency of circulating γδ T cells is highest in neonatal calves and declines as the animal ages, suggesting these cells may be particularly important in the immune system of the very young. Bovine respiratory syncytial virus (BRSV) is a significant cause of respiratory infection in calves, and is most severe in animals under one year of age. BRSV is also a significant factor in the development of bovine respiratory disease complex (BRDC), the leading cause of morbidity and mortality in feedlot cattle. Human respiratory syncytial virus (RSV) is closely related to BRSV and a leading cause of lower respiratory tract infection in infants and children worldwide. BRSV infection in calves shares striking similarities with RSV infection in human infants. To date, there have been few studies defining the role of γδ T cells in the immune response to BRSV or RSV infection in animals or humans, respectively. However, emerging evidence suggests that γδ T cells may play a critical role in the early recognition of infection and in shaping the development of the adaptive immune response through inflammatory chemokine and cytokine production. Further, while it is clear that γδ T cells accumulate in the lungs during BRSV and RSV infection, their role in protection vs. immunopathology remains unclear. This review will summarize what is currently known about the role of γδ T cells in the immune response to BRSV and BRDC in cattle, and where appropriate, draw parallels to the role of γδ T cells in the human response to RSV infection.

Low nephron endowment increases susceptibility to renal stress and chronic kidney disease

JCI insight

2023 Jan 10

Good, PI;Li, L;Hurst, HA;Serrano-Herrera, IM;Xu, K;Rao, M;Bateman, DA;Al-Awqati, Q;D'Agati, VD;Costantini, F;Lin, F;
PMID: 36626229 | DOI: 10.1172/jci.insight.161316

Preterm birth results in low nephron endowment and increased risk of acute kidney injury (AKI) and chronic kidney disease (CKD). To understand the pathogenesis of AKI and CKD in preterm humans, we generated novel mouse models with a 30-70% reduction in nephron number by inhibiting or deleting Ret tyrosine kinase in the developing ureteric bud. These mice developed glomerular and tubular hypertrophy followed by the transition to CKD, recapitulating the renal pathological changes seen in humans born preterm. We injected neonatal mice with gentamicin, a ubiquitous nephrotoxic exposure in preterm infants, and detected more severe proximal tubular injury in mice with low nephron number compared to controls with normal nephron number. Mice with low nephron number have reduced proliferative repair with more rapid development of CKD. Furthermore, mice had more profound inflammation with highly elevated levels of MCP-1 and CXCL10, produced in part by damaged proximal tubules. Our study directly links low nephron endowment with postnatal renal hypertrophy, which in this model is maladaptive and results in CKD. Underdeveloped kidneys are more susceptible to gentamicin-induced AKI, suggesting that AKI in the setting of low nephron number is more severe and further increases the risk of CKD in this vulnerable population.
Dichotomous Roles of Smooth Muscle Cell-Derived MCP1 (Monocyte Chemoattractant Protein 1) in Development of Atherosclerosis

Arteriosclerosis, thrombosis, and vascular biology

2022 Jun 23

Owsiany, KM;Deaton, RA;Soohoo, KG;Tram Nguyen, A;Owens, GK;
PMID: 35735018 | DOI: 10.1161/ATVBAHA.122.317882

Smooth muscle cells (SMCs) in atherosclerotic plaque take on multiple nonclassical phenotypes that may affect plaque stability and, therefore, the likelihood of myocardial infarction or stroke. However, the mechanisms by which these cells affect stability are only beginning to be explored.In this study, we investigated the contribution of inflammatory MCP1 (monocyte chemoattractant protein 1) produced by both classical Myh11 (myosin heavy chain 11)+ SMCs and SMCs that have transitioned through an Lgals3 (galectin 3)+ state in atherosclerosis using smooth muscle lineage tracing mice that label all Myh11+ cells and a dual lineage tracing system that targets Lgals3-transitioned SMC only.We show that loss of MCP1 in all Myh11+ smooth muscle results in a paradoxical increase in plaque size and macrophage content, driven by a baseline systemic monocytosis early in atherosclerosis pathogenesis. In contrast, knockout of MCP1 in Lgals3-transitioned SMCs using a complex dual lineage tracing system resulted in lesions with an increased Acta2 (actin alpha 2, smooth muscle)+ fibrous cap and decreased investment of Lgals3-transitioned SMCs, consistent with increased plaque stability. Finally, using flow cytometry and single-cell RNA sequencing, we show that MCP1 produced by Lgals3-transitioned SMCs influences multiple populations of inflammatory cells in late-stage plaques.MCP1 produced by classical SMCs influences monocyte levels beginning early in disease and was atheroprotective, while MCP1 produced by the Lgals3-transitioned subset of SMCs exacerbated plaque pathogenesis in late-stage disease. Results are the first to determine the function of Lgals3-transitioned inflammatory SMCs in atherosclerosis and highlight the need for caution when considering therapeutic interventions involving MCP1.
Overview of the role and action mechanism of microRNA-128 in viral infections

Microbial pathogenesis

2023 Mar 01

Alshahrani, SH;Alameri, AA;Kahar, F;Alexis Ramírez-Coronel, A;Fadhel Obaid, R;Alsaikhan, F;Zabibah, RS;Qasim, QA;Altalbawy, FMA;Fakri Mustafa, Y;Mirzaei, R;Karampoor, S;
PMID: 36746316 | DOI: 10.1016/j.micpath.2023.106020

Recently in vivo and in vitro studies have provided evidence establishing the significance of microRNAs (miRNAs) in both physiological and pathological conditions. In this regard, the role of miRNA-128 (miR-128) in health and diseases has been found, and its critical regulatory role in the context of some viral diseases has been recently identified. For instance, it has been found that miR-128 can serve as an antiviral mediator and significantly limit the replication and dissemination of human immunodeficiency virus type 1 (HIV-1). Besides, it has been noted that poliovirus receptor-related 4 (PVRL4) is post-transcriptionally regulated by miR-128, representing possible miRNA targets that can modulate measles virus infection. Of note, the downregulation of seminal exosomes eca-miR-128 is associated with the long-term persistence of Equine arteritis virus (EAV) in the reproductive tract, and this particular miRNA is a putative regulator of chemokine ligand 16 (C-X-C motif) as determined by target prediction analysis. In this review, the latest information on the role and action mechanism of miR-128 in viral infections will be summarized and discussed in detail.
Combined genetic deletion of GDF15 and FGF21 has modest effects on body weight, hepatic steatosis and insulin resistance in high fat fed mice

Molecular metabolism

2022 Sep 02

Patel, S;Haider, A;Alvarez-Guaita, A;Bidault, G;El-Sayed Moustafa, JS;Guiu-Jurado, E;Tadross, JA;Warner, J;Harrison, J;Virtue, S;Scurria, F;Zvetkova, I;Blüher, M;Small, KS;O'Rahilly, S;Savage, DB;
PMID: 36064109 | DOI: 10.1016/j.molmet.2022.101589

Obesity in humans and mice is associated with elevated levels of two hormones responsive to cellular stress, namely GDF15 and FGF21. Over-expression of each of these is associated with weight loss and beneficial metabolic changes but where they are secreted from and what they are required for physiologically in the context of overfeeding remains unclear.Here we used tissue selective knockout mouse models and human transcriptomics to determine the source of circulating GDF15 in obesity. We then generated and characterized the metabolic phenotypes of GDF15/FGF21 double knockout mice.Circulating GDF15 and FGF21 are both largely derived from the liver, rather than adipose tissue or skeletal muscle, in obese states. Combined whole body deletion of FGF21 and GDF15 does not result in any additional weight gain in response to high fat feeding but it does result in significantly greater hepatic steatosis and insulin resistance than that seen in GDF15 single knockout mice.Collectively the data suggest that overfeeding activates a stress response in the liver which is the major source of systemic rises in GDF15 and FGF21. These hormones then activate pathways which reduce this metabolic stress.
Single-cell profiling reveals pathogenic role and differentiation trajectory of granzyme K+ CD8+T cells in primary Sjögren's syndrome

JCI insight

2023 Mar 07

Xu, T;Zhu, HX;You, X;Ma, JF;Li, X;Luo, PY;Li, Y;Lian, ZX;Gao, CY;
PMID: 36881472 | DOI: 10.1172/jci.insight.167490

Primary Sjogren's syndrome (pSS) is a systemic autoimmune inflammatory disease mainly defined by T cell-dominated destruction of exocrine glands. Currently, CD8+T cells were closely related to the pathogenesis of pSS. However, the single-cell immune profiling of pSS and molecular signatures of pathogenic CD8+T cells have not been well elucidated. Our multiomics investigation identified that both T cell and B cell, especially CD8+T cells, were undergoing significant clonal expansion in pSS patients. TCR clonality analysis revealed that peripheral granzyme (GZM) K+CXCR6+CD8+T cells had higher proportion of shared clones with CD69+CD103-CD8+ tissue resident memory T (TRM) cells in labial glands in pSS. CD69+CD103-CD8+TRM cells featured by high expression of GZMK were more active and cytotoxic in pSS compared with their CD103+ counterparts. Peripheral GZMK+CXCR6+CD8+T cells with higher CD122 expression were increased and harbored a gene signature similar to TRM cells in pSS. Consistently, IL-15 was significantly elevated in pSS plasma and showed the capacity to promote differentiation of CD8+T cells into GZMK+CXCR6+CD8+T cells in a STAT5 dependent manner. Taken together, we depicted the immune landscape of pSS and further conducted comprehensive bioinformatics analysis and in vitro experimental investigation to characterize the pathogenic role and differentiation trajectory of CD8+TRM cells in pSS.
Prolonged breastfeeding protects from obesity by hypothalamic action of hepatic FGF21

Nature metabolism

2022 Jul 01

Pena-Leon, V;Folgueira, C;Barja-Fernández, S;Pérez-Lois, R;Da Silva Lima, N;Martin, M;Heras, V;Martinez-Martinez, S;Valero, P;Iglesias, C;Duquenne, M;Al-Massadi, O;Beiroa, D;Souto, Y;Fidalgo, M;Sowmyalakshmi, R;Guallar, D;Cunarro, J;Castelao, C;Senra, A;González-Saenz, P;Vázquez-Cobela, R;Leis, R;Sabio, G;Mueller-Fielitz, H;Schwaninger, M;López, M;Tovar, S;Casanueva, FF;Valjent, E;Diéguez, C;Prevot, V;Nogueiras, R;Seoane, LM;
PMID: 35879461 | DOI: 10.1038/s42255-022-00602-z

Early-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation.
Microglia-derived CCL2 has a prime role in neocortex neuroinflammation

Fluids and barriers of the CNS

2022 Aug 30

Errede, M;Annese, T;Petrosino, V;Longo, G;Girolamo, F;de Trizio, I;d'Amati, A;Uccelli, A;Kerlero de Rosbo, N;Virgintino, D;
PMID: 36042496 | DOI: 10.1186/s12987-022-00365-5

In myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), several areas of demyelination are detectable in mouse cerebral cortex, where neuroinflammation events are associated with scarce inflammatory infiltrates and blood-brain barrier (BBB) impairment. In this condition, the administration of mesenchymal stem cells (MSCs) controls neuroinflammation, attenuating astrogliosis and promoting the acquisition of stem cell traits by astrocytes. To contribute to the understanding of the mechanisms involved in the pathogenesis of EAE in gray matter and in the reverting effects of MSC treatment, the neocortex of EAE-affected mice was investigated by analyzing the cellular source(s) of chemokine CCL2, a molecule involved in immune cell recruitment and BBB-microvessel leakage.The study was carried out by immunohistochemistry (IHC) and dual RNAscope IHC/in situ hybridization methods, using astrocyte, NG2-glia, macrophage/microglia, and microglia elective markers combined with CCL2.The results showed that in EAE-affected mice, hypertrophic microglia are the primary source of CCL2, surround the cortex neurons and the damaged BBB microvessels. In EAE-affected mice treated with MSCs, microgliosis appeared diminished very soon (6 h) after treatment, an observation that was long-lasting (tested after 10 days). This was associated with a reduced CCL2 expression and with apparently preserved/restored BBB features. In conclusion, the hallmark of EAE in the mouse neocortex is a condition of microgliosis characterized by high levels of CCL2 expression.This finding supports relevant pathogenetic and clinical aspects of the human disease, while the demonstrated early control of neuroinflammation and BBB permeability exerted by treatment with MSCs may have important therapeutic implications.
Downregulation of eca-mir-128 in seminal exosomes and enhanced expression of CXCL16 in the stallion reproductive tract are associated with long-term persistence of equine arteritis virus

J Virol.

2018 Feb 14

Carossino M, Dini P, Kalbfleisch TS, Loynachan AT, Canisso IF, Shuck KM, Timoney PJ, Cook RF, Balasuriya UBR.
PMID: 29444949 | DOI: 10.1128/JVI.00015-18

Equine arteritis virus (EAV) can establish long-term persistent infection in the reproductive tract of stallions and is shed in the semen. Previous studies showed that long-term persistence is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistent infection is maintained despite the presence of a local inflammatory and humoral and mucosal antibody responses. Here, we demonstrated that equine seminal exosomes (SEs) are enriched in a small subset of miRNAs. Most importantly, we demonstrated that long-term EAV persistence is associated with the downregulation of an SE-associated miRNA (eca-mir-128) and with an enhanced expression of CXCL16 in the reproductive tract, a putative target of eca-mir-128. The findings presented herein suggest that SE eca-mir-128 is implicated in the regulation of the CXCL16/CXCR6 axis in the reproductive tract of persistently infected stallions, a chemokine axis strongly implicated in EAV persistence. This is a novel finding and warrants further investigation to identify its specific mechanism in modulating the CXCL16/CXCR6 axis in the reproductive tract of the EAV long-term carrier stallion.IMPORTANCEEquine arteritis virus (EAV) has the ability to establish long-term persistent infection in the stallion reproductive tract and to be shed in semen, which jeopardizes its worldwide control. Currently, the molecular mechanisms of viral persistence are being unraveled, and these are essential for the development of effective therapeutics to eliminate persistent infection. Recently, it has been determined that long-term persistence is associated with a specific allele of the CXCL16 gene (CXCL16S) and is maintained despite induction of local inflammatory, humoral and mucosal antibody responses. This study demonstrated that long-term persistence is associated with the downregulation of seminal exosome miRNA eca-mir-128 and enhanced expression of its putative target, CXCL16, in the reproductive tract. For the first time, this study suggests complex interactions between eca-mir-128 and cellular elements at the site of EAV persistence and implicates this miRNA in the regulation of the CXCL16/CXCR6 axis in the reproductive tract during long-term persistence.

Mammary tumor-derived CCL2 enhances prometastatic systemic inflammation through upregulation of IL1β in tumor-associated macrophages

OncoImmunology

2017 Jun 19

Kersten K, Coffelt SB, Hoogstraat M, Verstegen NJM, Vrijland K, Ciampricotti M, Doornebal CW, Hau CS, Wellenstein MD, Salvagno C, Doshi P, Lips EH, Wessels LFH, de Visser KE.
PMID: - | DOI: 10.1080/2162402X.2017.1334744

Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a mechanistic link between mammary tumor-induced IL17-producing γδ T cells, systemic expansion of immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated induction of IL1β in tumor-associated macrophages. In line with these findings, expression of CCL2 positively correlates with IL1Β and macrophage markers in human breast tumors. We demonstrate that blockade of CCL2 in mammary tumor-bearing mice results in reduced IL17 production by γδ T cells, decreased neutrophil expansion and enhanced CD8+ T cell activity. These results highlight a new role for CCL2 in facilitating the breast cancer-induced pro-metastatic systemic inflammatory γδ T cell – IL17 – neutrophil axis.

Translatomic analysis of regenerating and degenerating spinal motor neurons in injury and ALS

iScience

2021 Jul 01

Shadrach, J;Stansberry, W;Milen, A;Ives, R;Fogarty, E;Antonellis, A;Pierchala, B;
| DOI: 10.1016/j.isci.2021.102700

The neuromuscular junction is a synapse critical for muscle strength and coordinated motor function. Unlike CNS injuries, motor neurons mount robust regenerative responses after peripheral nerve injuries. Conversely, motor neurons selectively degenerate in diseases such as amyotrophic lateral sclerosis (ALS). To assess how these insults affect motor neurons in vivo, we performed ribosomal profiling of mouse motor neurons. Motor neuron-specific transcripts were isolated from spinal cords following sciatic nerve crush, a model of acute injury and regeneration, and in the SOD1G93A ALS model. Of the 267 transcripts upregulated after nerve crush, 38% were also upregulated in SOD1G93A motor neurons. However, most upregulated genes in injured and ALS motor neurons were context specific. Some of the most significantly upregulated transcripts in both paradigms were chemokines such as Ccl2 and Ccl7, suggesting an important role for neuroimmune modulation. Collectively these data will aid in defining pro-regenerative and pro-degenerative mechanisms in motor neurons.
CCR2 monocytes repair cerebrovascular damage caused by chronic social defeat stress

Brain, behavior, and immunity

2022 Jan 18

Lehmann, ML;Samuels, JD;Kigar, SL;Poffenberger, CN;Lotstein, ML;Herkenham, M;
PMID: 35063606 | DOI: 10.1016/j.bbi.2022.01.011

Immune surveillance of the brain plays an important role in health and disease. Peripheral leukocytes patrol blood-brain barrier interfaces, and after injury, monocytes cross the cerebrovasculature and follow a pattern of pro- and anti-inflammatory activity leading to tissue repair. We have shown that chronic social defeat (CSD) causes scattered vasculature disruptions. Here, we assessed CCR2+ monocyte trafficking to the vascular injury sites in Ccr2wt/rfp reporter mice both during CSD and one week following CSD cessation. We found that CSD for 14 days induced microhemorrhages where plasma fibrinogen leaked into perivascular spaces, but it did not affect the distribution or density of CCR2rfp+ monocytes in the brain. However, after recovery from CSD, many vascularly adhered CCR2+ cells were detected, and gene expression of the CCR2 chemokine receptor ligands CCL7 and CCL12, but not CCL2, was elevated in endothelial cells. Adhered CCR2+ cells were mostly the non-classical, anti-inflammatory Ly6Clo type, and they phagocytosed fibrinogen in perivascular spaces. In CCR2-deficient Ccr2rfp/rfp mice, fibrinogen levels remained elevated in recovery. Fibrinogen infused intracerebroventricularly induced CCR2+ cells to adhere to the vasculature and phagocytose perivascular fibrinogen in Ccr2wt/rfp but not Ccr2rfp/rfp mice. Depletion of monocytes with clodronate liposomes during CSD recovery prevented fibrinogen clearance and blocked behavioral recovery. We hypothesize that peripheral CCR2+ monocytes are not elevated in the brain on day 14 at the end of CSD and do not contribute to its behavioral effects at that time, but in recovery following cessation of stress, they enter the brain and exert restorative functions mediating vascular repair and normalization of behavior.

Pages

  • 1
  • 2
  • 3
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?