Li, L;Durand-de Cuttoli, R;Aubry, AV;Burnett, CJ;Cathomas, F;Parise, LF;Chan, KL;Morel, C;Yuan, C;Shimo, Y;Lin, HY;Wang, J;Russo, SJ;
PMID: 36450985 | DOI: 10.1038/s41586-022-05484-5
In humans, traumatic social experiences can contribute to psychiatric disorders1. It is suggested that social trauma impairs brain reward function such that social behaviour is no longer rewarding, leading to severe social avoidance2,3. In rodents, the chronic social defeat stress (CSDS) model has been used to understand the neurobiology underlying stress susceptibility versus resilience following social trauma, yet little is known regarding its impact on social reward4,5. Here we show that, following CSDS, a subset of male and female mice, termed susceptible (SUS), avoid social interaction with non-aggressive, same-sex juvenile C57BL/6J mice and do not develop context-dependent social reward following encounters with them. Non-social stressors have no effect on social reward in either sex. Next, using whole-brain Fos mapping, in vivo Ca2+ imaging and whole-cell recordings, we identified a population of stress/threat-responsive lateral septum neurotensin (NTLS) neurons that are activated by juvenile social interactions only in SUS mice, but not in resilient or unstressed control mice. Optogenetic or chemogenetic manipulation of NTLS neurons and their downstream connections modulates social interaction and social reward. Together, these data suggest that previously rewarding social targets are possibly perceived as social threats in SUS mice, resulting from hyperactive NTLS neurons that occlude social reward processing.
Cui, Y;Wu, H;Liu, Z;Ma, T;Liang, W;Zeng, Q;Chen, D;Qin, Q;Huang, B;Wang, MH;Huang, X;He, Y;Kuang, Y;Sugimoto, S;Sato, T;Wang, L;
PMID: 36373877 | DOI: 10.1002/path.6031
Radiation enteritis (RE) is a prevalent complication of radiotherapy for pelvic malignant tumors, characterized by severe intestinal epithelial destruction and progressive submucosal fibrosis. However, little is known about the pathogenesis of this disease and so far, there is no specific targeted therapy. Here, we report that CXCL16 is up-regulated in the injured intestinal tissues of RE patients and in a mouse model. Genetic deletion of Cxcl16 mitigates fibrosis and promotes intestinal stem cell-mediated epithelial regeneration after radiation injury in mice. Mechanistically, CXCL16 functions on myofibroblasts through its receptor CXCR6 and activates JAK3/STAT3 signaling to promote fibrosis, and meanwhile to transcriptionally modulate the levels of BMP4 and HGF in myofibroblasts. Moreover, we find that CXCL16 and CXCR6 auto- and cross-regulate themselves in positive feedback loops. Treatment with CXCL16 neutralizing monoclonal antibody attenuates fibrosis and improves the epithelial repair in RE mouse model. Our findings emphasize the important role of CXCL16 in the progression of RE, and suggest that CXCL16 signaling could be a potential therapeutic target for RE. This article is protected by
Molecular nutrition & food research
May, S;Greenow, KR;Higgins, AT;Derrick, AV;Taylor, E;Pan, P;Konstantinou, M;Nixon, C;Wooley, TE;Sansom, OJ;Wang, LS;Parry, L;
PMID: 36045438 | DOI: 10.1002/mnfr.202200234
Black raspberries (BRBs) have colorectal cancer (CRC) chemo-preventative effects. As CRC originates from an intestinal stem cell (ISC) this study has investigated the impact of BRBs on normal and mutant ISCs.Mice with an inducible Apcfl mutation in either the ISC (Lgr5CreERT2 ) or intestinal crypt (AhCre/VillinCreERT2 ) are fed a control or 10% BRB-supplemented diet. This study uses immunohistochemistry, gene expression analysis, and organoid culture to evaluate the effect of BRBs on intestinal homeostasis. RNAscope is performed for ISC markers on CRC adjacent normal colonic tissue pre and post BRB intervention from patients. 10% BRB diet has no overt effect on murine intestinal homeostasis, despite a reduced stem cell number. Following Apc ISC deletion, BRB diet extends lifespan and reduces tumor area. In the AhCre model, BRB diet attenuates the "crypt-progenitor" phenotype and reduces ISC marker gene expression. In ex vivo culture BRBs reduce the self-renewal capacity of murine and human Apc deficient organoids. Finally, the study observes a reduction in ISC marker gene expression in adjacent normal crypts following introduction of BRBs to the human bowel.BRBs play a role in CRC chemoprevention by protectively regulating the ISC compartment and further supports the use of BRBs in CRC prevention.
Single-cell RNA sequencing of human nail unit defines RSPO4 onychofibroblasts and SPINK6 nail epithelium
Kim, HJ;Shim, JH;Park, JH;Shin, HT;Shim, JS;Jang, KT;Park, WY;Lee, KH;Kwon, EJ;Jang, HS;Yang, H;Lee, JH;Yang, JM;Lee, D;
PMID: 34099859 | DOI: 10.1038/s42003-021-02223-w
Research on human nail tissue has been limited by the restricted access to fresh specimen. Here, we studied transcriptome profiles of human nail units using polydactyly specimens. Single-cell RNAseq with 11,541 cells from 4 extra digits revealed nail-specific mesenchymal and epithelial cell populations, characterized by RSPO4 (major gene in congenital anonychia) and SPINK6, respectively. In situ RNA hybridization demonstrated the localization of RSPO4, MSX1 and WIF1 in onychofibroblasts suggesting the activation of WNT signaling. BMP-5 was also expressed in onychofibroblasts implicating the contribution of BMP signaling. SPINK6 expression distinguished the nail-specific keratinocytes from epidermal keratinocytes. RSPO4+ onychofibroblasts were distributed at close proximity with LGR6+ nail matrix, leading to WNT/β-catenin activation. In addition, we demonstrated RSPO4 was overexpressed in the fibroblasts of onychomatricoma and LGR6 was highly expressed at the basal layer of the overlying epithelial component, suggesting that onychofibroblasts may play an important role in the pathogenesis of onychomatricoma.
Ziskin JL, Dunlap D, Yaylaoglu M, Fodor IK, Forrest WF, Patel R, Ge N, Hutchins GG, Pine JK, Quirke P, Koeppen H, Jubb AM (2013).
PMID: 22637696 | DOI: 10.1136/gutjnl-2011-301195.
OBJECTIVE:
Wnt/Tcf, Lgr5, Ascl2 and/or Bmi1 signalling is believed to define the mouse intestinal stem cell niche(s) from which adenomas arise. The aim of this study was to determine the relevance of these putative intestinal stem cell markers to human colorectal cancer.
DESIGN:
19 putative intestinal stem cell markers, including Ascl2 and Lgr5, were identified from published data and an evaluation of a human colorectal gene expression database. Associations between these genes were assessed by isotopic in situ hybridisation (ISH) in 57 colorectal adenocarcinomas. Multiplex fluorescent ISH and chromogenic non-isotopic ISH were performed to confirm expression patterns. The prognostic significance of Lgr5 was assessed in 891 colorectal adenocarcinomas.
RESULTS:
Ascl2 and Lgr5 were expressed in 85% and 74% of cancers respectively, and expression was positively correlated (p=0.003). Expression of Bmi1 was observed in 47% of cancers but was very weak in 98% of cases with expression. Both Ascl2 and/or Lgr5 were positively correlated with the majority of genes in the signature but neither was correlated with Cdk6, Gpx2, Olfm4 or Tnfrsf19. Lgr5 did not have prognostic significance.
CONCLUSION:
These data suggest that 74-85% of colorectal cancers express a Lgr5/Ascl2 associated signature and support the hypothesis that they derive from Lgr5(+)/Ascl2(+) crypt stem cells, not Bmi1(+) stem cells. However, Olfm4 was not found to be a useful marker of Lgr5(+) cells in normal colon or tumours. In this large series, Lgr5 expression is not associated with increased tumour aggressiveness, as might be expected from a cancer stem cell marker.
Chen G, Gao C, Gao X, Zhang DH, Kuan SF, Burns TF, Hu J.
PMID: 29167314 | DOI: 10.1158/1535-7163.MCT-17-0561
One of the most encouraging developments in oncology has been the success of BRAF inhibitors in BRAF-mutant melanoma. However, in contrast to its striking efficacy in BRAF-mutant melanomas, BRAF inhibitor monotherapy is ineffective in BRAF-mutant colorectal cancer (CRC). While many studies on BRAF inhibitor resistance in CRC have focused on mechanisms underlying the reactivation of the EGFR/RAS/RAF/MEK/ERK pathway, the current study focuses on identifying novel adaptive signaling mechanisms, a fresh angle on CRC resistance to BRAF inhibition. We found that treatment with BRAF inhibitors (both current and next generation BRAF inhibitors) upregulated the Wnt/β-catenin pathway in BRAFV600E-mutant CRC cell lines through activating the cytoplasmic tyrosine kinase FAK (focal adhesion kinase). The results showed that FAK activation upon BRAF inhibitor treatment did not require EGFR (Epidermal Growth Factor Receptor) or ERK1/2 (extracellular-signal-regulated kinases1/2) activation, implying that BRAF inhibitor treatment-induced hyperactivation of Wnt signaling is "pathway reactivation"-independent. BRAF inhibition-induced Wnt pathway activation was further validated in preclinical models of BRAFV600E-mutant CRC including cell line xenograft model and a PDX (patient-derived xenograft) model. Combined inhibition of BRAF/Wnt pathways or BRAF/FAK pathways exerted strong synergistic antitumor effects in cell culture model and mouse xenograft model. Overall, the current study has identified activation of the Wnt/β-catenin pathway as a novel fundamental cause of colon cancer resistance to BRAF inhibition. Our results suggest that while complete vertical pathway blockade is pivotal for effective and durable control of BRAF-mutant CRC, co-targeting parallel adaptive signaling-the Wnt/β-catenin pathway-is also essential.
Helicobacter pylori Activate and Expand Lgr5+ Stem Cells Through Direct Colonization of the Gastric Glands (check out Movie S4 when it gets out)
Gastroenterology. 2015 Feb 25.
Sigal M, Rothenberg ME, Logan CY, Lee JY, Honaker RW, Cooper RL, Passarelli B, Camorlinga M, Bouley DM, Alvarez G, Nusse R, Torres J, Amieva MR
Background & Aims Helicobacter pylori infection is the main risk factor for gastric cancer. We characterized the interactions of H pylori with gastric epithelial progenitor and stem cells in humans and mice and investigated how these interactions contribute to H pylori-induced pathology. Methods We used quantitative confocal microscopy and 3-dimensional reconstruction of entire gastric glands to determine the localizations of H pylori in stomach tissues from humans and infected mice. Using lineage tracing to mark cells derived from Lgr5+ stem cells (Lgr5-eGFP-IRES-CreERT2/Rosa26-TdTomato mice) and in situ hybridization, we analyzed gastric stem cell responses to infection. Isogenic H pylori mutants were used to determine the role of specific virulence factors in stem cell activation and pathology. Results H pylori grow as distinct bacterial microcolonies deep in the stomach glands and interact directly with gastric progenitor and stem cells in tissues from mice and humans. These gland-associated bacteria activate stem cells, increasing the number of stem cells, accelerating Lgr5+ stem cell proliferation, and upregulating expression of stem cell-related genes. Mutant bacteria with defects in chemotaxis that are able to colonize the stomach surface but not the antral glands in mice do not activate stem cells. Moreover, bacteria that are unable to inject the contact-dependent virulence factor CagA into the epithelium colonized stomach glands in mice, but did not activate stem cells or produce hyperplasia to the same extent as wild-type H pylori. Conclusions H pylori colonize and manipulate the progenitor and stem cell compartments, which alters turnover kinetics and glandular hyperplasia. Bacterial ability to alter the stem cells has important implications for gastrointestinal stem cell biology and H pylori-induced gastric pathology.
Cell Mol Gastroenterol Hepatol.
Meijer BJ1, Giugliano FP, Baan B, van der Meer JHM, Meisner S, van Roest M, Koelink PJ, de Boer RJ, Jones N, Breitwieser W, van der Wel NN, Wildenberg ME, van den Brink GR, Heijmans J, Muncan V
PMID: 31958521 | DOI: 10.1016/j.jcmgh.2020.01.005
BACKGROUND & AIMS:
Activation factor-1 transcription factor family members activating transcription factors 2 and 7 (ATF2 and ATF7) have highly redundant functions owing to highly homologous DNA binding sites. Their role in intestinal epithelial homeostasis and repair is unknown. Here, we assessed the role of these proteins in these conditions in an intestine-specific mouse model.
METHODS:
We performed in vivo and ex vivo experiments using Villin-CreERT2Atf2fl/flAtf7ko/ko mice. We investigated the effects of intestinal epithelium-specific deletion of the Atf2 DNA binding region in Atf7-/- mice on cellular proliferation, differentiation, apoptosis, and epithelial barrier function under homeostatic conditions. Subsequently, we exposed mice to 2% dextran sulfate sodium (DSS) for 7 days and 12 Gy whole-body irradiation and assessed the response to epithelial damage.
RESULTS:
Activating phosphorylation of ATF2 and ATF7 was detected mainly in the crypts of the small intestine and the lower crypt region of the colonic epithelium. Under homeostatic conditions, no major phenotypic changes were detectable in the intestine of ATF mutant mice. However, on DSS exposure or whole-body irradiation, the intestinal epithelium showed a clearly impaired regenerative response. Mutant mice developed severe ulceration and inflammation associated with increased epithelial apoptosis on DSS exposure and were less able to regenerate colonic crypts on irradiation. In vitro, organoids derived from double-mutant epithelium had a growth disadvantage compared with wild-type organoids, impaired wound healing capacity in scratch assay, and increased sensitivity to tumor necrosis factor-?-induced damage.
CONCLUSIONS:
ATF2 and ATF7 are dispensable for epithelial homeostasis, but are required to maintain epithelial regenerative capacity and protect against cell death during intestinal epithelial damage and repair.
Biological Psychiatry Global Open Science
Jiang, S;Zhang, H;Eiden, L;
| DOI: 10.1016/j.bpsgos.2023.04.001
Background The neuropeptide PACAP is a master regulator of central and peripheral stress responses, yet it is not clear how PACAP projections throughout the brain execute endocrine and behavioral stress responses. Methods We used AAV neuronal tracing, an acute restraint stress (ARS) paradigm, and intersectional genetics, in C57Bl6 mice, to identify PACAP-containing circuits controlling stress-induced behavior and endocrine activation. Results PACAP deletion from forebrain excitatory neurons, including a projection directly from medial prefrontal cortex (mPFC) to hypothalamus, impairs c-fos activation and CRH mRNA elevation in PVN after 2 hr of restraint, without affecting ARS-induced hypophagia, or c-fos elevation in non-hypothalamic brain. Elimination of PACAP within projections from lateral parabrachial nucleus to extended amygdala (EA), on the other hand, attenuates ARS-induced hypophagia, along with EA fos induction, without affecting ARS-induced CRH mRNA elevation in PVN. PACAP projections to EA terminate at PKCδ neurons in both central amygdala (CeA) and oval nuclei of bed nucleus of stria terminalis (BNSTov). Silencing of PKCδ neurons in CeA, but not in BNSTov, attenuates ARS-induced hypophagia. Experiments were carried out in mice of both sexes with n>5 per group. Conclusions A frontocortical descending PACAP projection controls PVN CRH mRNA production, to maintain hypothalamo-pituitary adrenal (HPA) axis activation, and regulate the endocrine response to stress. An ascending PACAPergic projection from eLPBn to PKCδ neurons in central amygdala regulates behavioral responses to stress. Defining two separate limbs of the acute stress response provides broader insight into the specific brain circuitry engaged by the psychogenic stress response.
Cellular and molecular gastroenterology and hepatology
Li, C;Zhou, Y;Wei, R;Napier, DL;Sengoku, T;Alstott, MC;Liu, J;Wang, C;Zaytseva, YY;Weiss, HL;Wang, Q;Evers, BM;
PMID: 36584817 | DOI: 10.1016/j.jcmgh.2022.12.012
The Intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis. An imbalance in this highly regimented process within the intestinal crypts is associated with several intestinal pathologies. Although metabolic changes are known to play a pivotal role in cell proliferation and differentiation, how glycolysis contributes to intestinal epithelial homeostasis remains to be defined.Small intestines were harvested from mice with specific hexokinase 2 (HK2) deletion in the intestinal epithelium or LGR5+ stem cells. Glycolysis was measured using the Seahorse XFe96 analyzer. Expression of phospho-p38 MAPK, the transcription factor atonal homolog 1 (ATOH1), and intestinal cell differentiation markers lysozyme, mucin 2, and chromogranin A were determined by western blot, qPCR or IF and IHC staining.HK2 is a target gene of Wnt signaling in intestinal epithelium. HK2 knockout (KO) or inhibition of glycolysis resulted in increased numbers of Paneth, goblet, and enteroendocrine cells and decreased intestinal stem cell self-renewal. Mechanistically, HK2 KO resulted in activation of p38 MAPK and increased expression of ATOH1; inhibition of p38 MAPK signaling attenuated the phenotypes induced by HK2 KO in intestinal organoids. HK2 KO significantly decreased glycolysis and lactate production in intestinal organoids; supplementation of lactate or pyruvate reversed the phenotypes induced by HK2 KO.Our results show that HK2 regulates intestinal stem cell self-renewal and differentiation through p38 MAPK/ATOH1 signaling pathway. Our findings demonstrate an essential role for glycolysis in maintenance of intestinal stem cell function.
ARCGHR Neurons Regulate Muscle Glucose Uptake
de Lima, JBM;Debarba, LK;Rupp, AC;Qi, N;Ubah, C;Khan, M;Didyuk, O;Ayyar, I;Koch, M;Sandoval, DA;Sadagurski, M;
PMID: 34063647 | DOI: 10.3390/cells10051093
The growth hormone receptor (GHR) is expressed in brain regions that are known to participate in the regulation of energy homeostasis and glucose metabolism. We generated a novel transgenic mouse line (GHRcre) to characterize GHR-expressing neurons specifically in the arcuate nucleus of the hypothalamus (ARC). Here, we demonstrate that ARCGHR+ neurons are co-localized with agouti-related peptide (AgRP), growth hormone releasing hormone (GHRH), and somatostatin neurons, which are activated by GH stimulation. Using the designer receptors exclusively activated by designer drugs (DREADD) technique to control the ARCGHR+ neuronal activity, we demonstrate that the activation of ARCGHR+ neurons elevates a respiratory exchange ratio (RER) under both fed and fasted conditions. However, while the activation of ARCGHR+ promotes feeding, under fasting conditions, the activation of ARCGHR+ neurons promotes glucose over fat utilization in the body. This effect was accompanied by significant improvements in glucose tolerance, and was specific to GHR+ versus GHRH+ neurons. The activation of ARCGHR+ neurons increased glucose turnover and whole-body glycolysis, as revealed by hyperinsulinemic-euglycemic clamp studies. Remarkably, the increased insulin sensitivity upon the activation of ARCGHR+ neurons was tissue-specific, as the insulin-stimulated glucose uptake was specifically elevated in the skeletal muscle, in parallel with the increased expression of muscle glycolytic genes. Overall, our results identify the GHR-expressing neuronal population in the ARC as a major regulator of glycolysis and muscle insulin sensitivity in vivo.
Frontiers in molecular neuroscience
Kim, JJ;Sapio, MR;Vazquez, FA;Maric, D;Loydpierson, AJ;Ma, W;Zarate, CA;Iadarola, MJ;Mannes, AJ;
PMID: 35706427 | DOI: 10.3389/fnmol.2022.892345
Ketamine, an N-methyl-D-aspartate (NMDA)-receptor antagonist, is a recently revitalized treatment for pain and depression, yet its actions at the molecular level remain incompletely defined. In this molecular-pharmacological investigation in the rat, we used short- and longer-term infusions of high dose ketamine to stimulate neuronal transcription processes. We hypothesized that a progressively stronger modulation of neuronal gene networks would occur over time in cortical and limbic pathways. A continuous intravenous administration paradigm for ketamine was developed in rat consisting of short (1 h) and long duration (10 h, and 10 h + 24 h recovery) infusions of anesthetic concentrations to activate or inhibit gene transcription in a pharmacokinetically controlled fashion. Transcription was measured by RNA-Seq in three brain regions: frontal cortex, hippocampus, and amygdala. Cellular level gene localization was performed with multiplex fluorescent in situ hybridization. Induction of a shared transcriptional regulatory network occurred within 1 h in all three brain regions consisting of (a) genes involved in stimulus-transcription factor coupling that are induced during altered synaptic activity (immediate early genes, IEGs, such as c-Fos, 9-12 significant genes per brain region, p < 0.01 per gene) and (b) the Nrf2 oxidative stress-antioxidant response pathway downstream from glutamate signaling (Nuclear Factor Erythroid-Derived 2-Like 2) containing 12-25 increasing genes (p < 0.01) per brain region. By 10 h of infusion, the acute results were further reinforced and consisted of more and stronger gene alterations reflecting a sustained and accentuated ketamine modulation of regional excitation and plasticity. At the cellular level, in situ hybridization localized up-regulation of the plasticity-associated gene Bdnf, and the transcription factors Nr4a1 and Fos, in cortical layers III and V. After 24 h recovery, we observed overshoot of transcriptional processes rather than a smooth return to homeostasis suggesting an oscillation of plasticity occurs during the transition to a new phase of neuronal regulation. These data elucidate critical molecular regulatory actions during and downstream of ketamine administration that may contribute to the unique drug actions of this anesthetic agent. These molecular investigations point to pathways linked to therapeutically useful attributes of ketamine.