Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (18)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Gad1 (50) Apply Gad1 filter
  • Slc17a6 (32) Apply Slc17a6 filter
  • Sst (31) Apply Sst filter
  • SLC32A1 (29) Apply SLC32A1 filter
  • vGlut2 (29) Apply vGlut2 filter
  • DRD2 (27) Apply DRD2 filter
  • FOS (27) Apply FOS filter
  • Gad2 (27) Apply Gad2 filter
  • egfp (25) Apply egfp filter
  • PVALB (24) Apply PVALB filter
  • Slc17a7 (23) Apply Slc17a7 filter
  • tdTomato (23) Apply tdTomato filter
  • TH (22) Apply TH filter
  • (-) Remove Crh filter Crh (18)
  • VGAT (17) Apply VGAT filter
  • DRD1 (15) Apply DRD1 filter
  • Npy (12) Apply Npy filter
  • VGluT1 (12) Apply VGluT1 filter
  • Cre (12) Apply Cre filter
  • GFP (11) Apply GFP filter
  • CCK (10) Apply CCK filter
  • ESR1 (10) Apply ESR1 filter
  • GFAP (10) Apply GFAP filter
  • AGRP (10) Apply AGRP filter
  • TAC1 (10) Apply TAC1 filter
  • Oxtr (10) Apply Oxtr filter
  • Penk (10) Apply Penk filter
  • Pdyn (10) Apply Pdyn filter
  • Pomc (10) Apply Pomc filter
  • GCG (9) Apply GCG filter
  • Chat (9) Apply Chat filter
  • C-fos (9) Apply C-fos filter
  • TBD (9) Apply TBD filter
  • Lgr5 (8) Apply Lgr5 filter
  • Rbfox3 (7) Apply Rbfox3 filter
  • Mc4r (7) Apply Mc4r filter
  • Prkcd (7) Apply Prkcd filter
  • Aldh1l1 (7) Apply Aldh1l1 filter
  • Bdnf (7) Apply Bdnf filter
  • Calb2 (7) Apply Calb2 filter
  • MBP (7) Apply MBP filter
  • OPRM1 (7) Apply OPRM1 filter
  • Trpv1 (7) Apply Trpv1 filter
  • Nts (7) Apply Nts filter
  • Vip (7) Apply Vip filter
  • Il-6 (7) Apply Il-6 filter
  • SOX2 (6) Apply SOX2 filter
  • GAPDH (6) Apply GAPDH filter
  • CNR1 (6) Apply CNR1 filter
  • GLP1R (6) Apply GLP1R filter

Product

  • (-) Remove RNAscope Fluorescent Multiplex Assay filter RNAscope Fluorescent Multiplex Assay (18)

Research area

  • Neuroscience (16) Apply Neuroscience filter
  • Behavior (1) Apply Behavior filter
  • Endocrinology (1) Apply Endocrinology filter
  • Eyes (1) Apply Eyes filter
  • Gender Bias (1) Apply Gender Bias filter
  • Other (1) Apply Other filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Oxytosin (1) Apply Oxytosin filter
  • Retina (1) Apply Retina filter

Category

  • Publications (18) Apply Publications filter
Activation of oxytocin receptors in mouse GABAergic amacrine cells modulates retinal dopaminergic signaling

BMC biology

2022 Sep 21

Hu, S;Wang, Y;Han, X;Dai, M;Zhang, Y;Ma, Y;Weng, S;Xiao, L;
PMID: 36127701 | DOI: 10.1186/s12915-022-01405-0

Oxytocin, secreted by oxytocin neurons in the hypothalamus, is an endogenous neuropeptide involved in modulating multiple sensory information processing pathways, and its roles in the brain have been associated with prosocial, maternal, and feeding-related behaviors. Visual information is necessary for initiating these behaviors, with the retina consisting of the first stage in the visual system mediating external stimulus perception. Oxytocin has been detected in the mammalian retina; however, the expression and possible function of oxytocin receptors (OxtR) in the retina remain unknown. Here, we explore the role of oxytocin in regulating visual information processing in the retina.We observed that OxtR mRNA and protein are expressed in the mouse retina. With Oxtr-Cre transgenic mice, immunostaining, and fluorescence in situ hybridization, we found that OxtRs are mainly expressed in GABAergic amacrine cells (ACs) in both the inner nuclear layer (INL) and ganglion cell layer (GCL). Further immunoreactivity studies showed that GABAergic OxtR+ neurons are mainly cholinergic and dopaminergic neurons in the INL and are cholinergic and corticotrophin-releasing hormone neurons in the GCL. Surprisingly, a high level of Oxtr mRNAs was detected in retinal dopaminergic neurons, and exogenous oxytocin application activated dopaminergic neurons to elevate the retinal dopamine level. Relying on in vivo electroretinographic recording, we found that activating retinal OxtRs reduced the activity of bipolar cells via OxtRs and dopamine receptors.These data indicate the functional expression of OxtRs in retinal GABAergic ACs, especially dopaminergic ACs, and expand the interactions between oxytocinergic and dopaminergic systems. This study suggests that visual perception, from the first stage of information processing in the retina, is modulated by hypothalamic oxytocin signaling.
Striatal cholinergic interneurons are a novel target of corticotropin releasing factor.

J Neurosci.

2019 May 01

Lemos JC, Shin JH, Alvarez VA.
PMID: 31109960 | DOI: 10.1523/JNEUROSCI.0479-19.2019

Cholinergic interneurons (CINs) are critical regulators of striatal network activity and output. Changes in CIN activity are thought to encode salient changes in the environment and stimulus-response-outcome associations. Here we report that the stress-associated neuropeptide corticotropin releasing factor (CRF) produces a profound and reliable increase in the spontaneous firing of CINs in both dorsal striatum and nucleus accumbens (NAc) through activation of CRF type 1 receptors, production of cAMP and reduction in spike accommodation in male mice. The increase of CIN firing by CRF results in the activation muscarinic acetylcholine receptors type 5, which mediate potentiation of dopamine transmission in the striatum. This study provides critical mechanistic insight into how CRF modulates striatal activity and dopamine transmission in the NAc to likely account for CRF facilitation of appetitive behaviors.SIGNIFICANCE STATEMENT Although the presence of CRF receptors in the dorsal and ventral striatum has been acknowledged, the cellular identity and the functional consequences of receptor activation is unknown. Here we report that striatal cholinergic interneurons express CRF-R1 receptors and are acutely activated by the neuropeptide CRF that is released in response to salient environmental stimuli. Cholinergic interneurons make <1% of the cells in the striatum but are critical regulators of the striatal circuitry and its output. CRF's fast and potent activation of cholinergic interneurons could have far reaching behavioral implications across motivated behaviors controlled by the striatum.

Acute hypernatremia promotes anxiolysis and attenuates stress-induced activation of the hypothalamic-pituitary-adrenal axis in male mice.

Physiol Behav. 2014 Apr 2. pii: S0031-9384(14)00173-5.

Smith JA, Wang L, Hiller H, Taylor CT, de Kloet AD, Krause EG.
PMID: 24704193 | DOI: 10.1016/j.physbeh.2014.03.027.

Previous investigation by our laboratory found that acute hypernatremia potentiates an oxytocinergic tone that inhibits parvocellular neurosecretory neurons in the paraventricular nucleus of the hypothalamus (PVN), attenuates restraint-induced surges in corticosterone (CORT), and reduces anxiety-like behavior in male rats. To investigate the neural mechanisms mediating these effects and extend our findings to a more versatile species, we repeated our studies using laboratory mice. In response to 2.0M NaCl injections, mice had increased plasma sodium concentrations which were associated with a blunted rise in CORT subsequent to restraint challenge relative to 0.15M NaCl injected controls. Immunofluorescent identification of the immediate early gene product Fos found that 2.0M NaCl treatment increased the number of activated neurons producing oxytocin in the PVN. To evaluate the effect of acute hypernatremia on PVN neurons producing corticotropin-releasing hormone (CRH), we used the Cre-lox system to generate mice that produced the red fluorescent protein, tdTomato, in cells that had Cre-recombinase activity driven by CRH gene expression. Analysis of brain tissue from these CRH-reporter mice revealed that 2.0M NaCl treatment caused a dramatic reduction in Fos-positive nuclei specifically in CRH-producing PVN neurons. This altered pattern of activity was predictive of alleviated anxiety-like behavior as mice administered 2.0M NaCl spent more time exploring the open arms of an elevated-plus maze than 0.15M NaCl treated controls. Taken together, these results further implicate an oxytocin-dependent inhibition of CRH neurons in the PVN and demonstrate the impact that slight elevations in plasma sodium have on the hypothalamic-pituitary-adrenocortical axis output and anxiety-like behavior.
Development of stress-induced bladder insufficiency requires functional TRPV1 channels.

Am J Physiol Renal Physiol.

2018 Aug 08

Tykocki NR, Heppner TJ, Erikson CS, van Batavia JP, Vizzard MA, Nelson MT, Mingin GC.
PMID: 30089031 | DOI: 10.1152/ajprenal.00231.2018

Social stress causes profound urinary bladder dysfunction in children that often continues into adulthood. We discovered that the intensity and duration of social stress influences whether bladder dysfunction presents as overactivity or underactivity. The transient receptor potential vanilloid type 1 (TRPV1) channel is integral in causing stress-induced bladder overactivity by increasing bladder sensory outflow, but little is known about the development of stress-induced bladder underactivity. We sought to determine if TRPV1 channels are involved in bladder underactivity caused by stress. Voiding function, sensory nerve activity, and bladder wall remodeling were assessed in C57Bl/6 and TRPV1 knockout mice exposed to intensified social stress, using conscious cystometry, ex vivo afferent nerve recordings, and histology. Intensified social stress increased void volume, intermicturition interval, bladder volume and bladder wall collagen content in C57Bl/6 mice, indicative of bladder wall remodeling and underactive bladder. However, afferent nerve activity was unchanged, and unaffected by the TRPV1 antagonist capsazepine. Interestingly, all indices of bladder function were unchanged in TRPV1 knockout mice in response to social stress, even though corticotrophin releasing hormone expression in Barrington's Nucleus still increased. These results suggest that TRPV1 channels in the periphery are a linchpin in the development of stress-induced bladder dysfunction, both with regard to increased sensory outflow that leads to overactive bladder, and bladder wall decompensation that leads to underactive bladder. TRPV1 channels represent an intriguing target to prevent the development of stress-induced bladder dysfunction in children.

Endocannabinoid control of the insular-bed nucleus of the stria terminalis circuit regulates negative affective behavior associated with alcohol abstinence.

Neuropsychopharmacology.

2018 Nov 02

Centanni SW, Morris BD, Luchsinger JR, Bedse G, Fetterly TL, Patel S, Winder DG.
PMID: 30390064 | DOI: 10.1038/s41386-018-0257-8

Negative affect is a core symptom domain associated with an array of neurological and psychiatric disorders and is only partially targeted by current therapies, highlighting the need for better, more targeted treatment options. This study focuses on negative affective symptoms associated with prolonged alcohol abstinence, one of the leading causes of relapse. Using a mouse model of chronic alcohol consumption followed by forced abstinence (CDFA), prolonged alcohol abstinence increased c-fos expression and spontaneous glutamatergic neurotransmission in the dorsal bed nucleus of the stria terminalis (dBNST), a region heavily implicated in negative affect in both humans and rodents. Further, pharmacologically enhancing eCBs with JZL184 prevents abstinence-induced increases in dBNST neuronal activity, underscoring the therapeutic potential of drugs targeting the brain's eCB system. Next, we used a channelrhodopsin-assisted mapping strategy to identify excitatory inputs to the dBNST that could contribute to CDFA-induced negative affect. We identified the insular cortex (insula), a region involved in regulating interoception, as a dense, functional, endocannabinoid-sensitive input to the dBNST. Using a chemogenetic strategy to locally mimic eCB signaling, we demonstrate that the insula strongly influences CDFA behavioral and BNST neuronal activity. Lastly, we used viral anterograde transsynaptic expression in combination with a Gq-DREADD to selectively recruit dBNST neurons receiving insula projections. Chemogenetic recruitment of these neurons mimicked behavioral and c-fos responses observed in CDFA. Collectively, this study supports a role for the insula-BNST neural circuit in negative affective disturbances and highlights the therapeutic potential of the endocannabinoid system for treating negative affective disorders.

Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression

Cell.

2017 Jul 13

Knowland D, Lilascharoen V, Pacia CP, Shin S, Wang EH, Lim BK.
PMID: 28689640 | DOI: 10.1016/j.cell.2017.06.015

Major depressive disorder (MDD) patients display a common but often variable set of symptoms making successful, sustained treatment difficult to achieve. Separate depressive symptoms may be encoded by differential changes in distinct circuits in the brain, yet how discrete circuits underlie behavioral subsets of depression and how they adapt in response to stress has not been addressed. We identify two discrete circuits of parvalbumin-positive (PV) neurons in the ventral pallidum (VP) projecting to either the lateral habenula or ventral tegmental area contributing to depression. We find that these populations undergo different electrophysiological adaptations in response to social defeat stress, which are normalized by antidepressant treatment. Furthermore, manipulation of each population mediates either social withdrawal or behavioral despair, but not both. We propose that distinct components of the VP PV circuit can subserve related, yet separate depressive-like phenotypes in mice, which could ultimately provide a platform for symptom-specific treatments of depression.

α2A-adrenergic receptor activation decreases parabrachial nucleus excitatory drive onto BNST CRF neurons and reduces their activity in vivo.

J Neurosci.

2018 Nov 26

Fetterly TL, Basu A, Nabit BP, Awad E, Williford KM, Centanni SW, Matthews RT, Silberman Y, Winder DG.
PMID: 30478032 | DOI: 10.1523/JNEUROSCI.1035-18.2018

Stress contributes to numerous psychiatric disorders. CRF signaling and CRF neurons in the bed nucleus of the stria terminalis (BNST) drive negative affective behaviors, thus agents that decrease activity of these cells may be of therapeutic interest. Here, we show that acute restraint stress increases cFos expression in CRF neurons in the mouse dorsal BNST, consistent with a role for these neurons in stress-related behaviors. We find that activation of α2A-adrenergic receptors (ARs) by the agonist guanfacine reduced cFos expression in these neurons both in stressed and unstressed conditions. Further, we find that α- and β-ARs differentially regulate excitatory drive onto these neurons. Pharmacological and channelrhodopsin-assisted mapping experiments suggest that α2A-ARs specifically reduce excitatory drive from parabrachial nucleus (PBN) afferents onto CRF neurons. Given that the α2A-AR is a Gi-linked GPCR, we assessed the impact of activating the Gi-coupled DREADD hM4Di in the PBN on restraint stress regulation of BNST CRF neurons. CNO activation of PBN hM4Di reduced stress-induced Fos in BNST Crh neurons. Further, utilizing Prkcd as an additional marker of BNST neuronal identity, we uncovered a female-specific upregulation of the co-expression of Prkcd/Crh in BNST neurons following stress, which was prevented by ovariectomy. These findings show that stress activates BNST CRF neurons, and that α2A-AR activation suppresses the in vivo activity of these cells, at least in part by suppressing excitatory drive from PBN inputs onto CRF neurons.SIGNIFICANCE STATEMENTStress is a major variable contributing to mood disorders. Here, we show that stress increases activation of BNST CRF neurons that drive negative affective behavior. We find that the clinically well-tolerated α2A-AR agonist guanfacine reduces activity of these cells in vivo, and reduces excitatory PBN inputs onto these cells ex vivo Additionally, we uncover a novel sex-dependent co-expression of Prkcd with Crh in female BNST neurons after stress, an effect abolished by ovariectomy. These results demonstrate input-specific interactions between NE and CRF, and point to an action by which guanfacine may reduce negative affective responses.

A Corticotropin Releasing Factor Network in the Extended Amygdala for Anxiety.

J Neurosci.

2019 Feb 06

Pomrenze MB, Tovar-Diaz J, Blasio A, Maiya R, Giovanetti SM, Lei K, Morikawa H, Hopf FW, Messing RO.
PMID: 30530860 | DOI: 10.1523/JNEUROSCI.2143-18.2018

The central amygdala (CeA) is important for fear responses to discrete cues. Recent findings indicate that the CeA also contributes to states of sustained apprehension that characterize anxiety, although little is known about the neural circuitry involved. The stress neuropeptide corticotropin releasing factor (CRF) is anxiogenic and is produced by subpopulations of neurons in the lateral CeA and the dorsolateral bed nucleus of the stria terminalis (dlBST). Here we investigated the function of these CRF neurons in stress-induced anxiety using chemogenetics in male rats that express Cre recombinase from a Crh promoter. Anxiety-like behavior was mediated by CRF projections from the CeA to the dlBST and depended on activation of CRF1 receptors and CRF neurons within the dlBST. Our findings identify a CRFCeA→CRFdlBST circuit for generating anxiety-like behavior and provide mechanistic support for recent human and primate data suggesting that the CeA and BST act together to generate states of anxiety.SIGNIFICANCE STATEMENT Anxiety is a negative emotional state critical to survival, but persistent, exaggerated apprehension causes substantial morbidity. Identifying brain regions and neurotransmitter systems that drive anxiety can help in developing effective treatment. Much evidence in rodents indicates that neurons in the bed nucleus of the stria terminalis (BST) generate anxiety-like behaviors, but more recent findings also implicate neurons of the CeA. The neuronal subpopulations and circuitry that generate anxiety are currently subjects of intense investigation. Here we show that CeA neurons that release the stress neuropeptide corticotropin-releasing factor (CRF) drive anxiety-like behaviors in rats via a pathway to dorsal BST that activates local BST CRF neurons. Thus, our findings identify a CeA→BST CRF neuropeptide circuit that generates anxiety-like behavior.

Voluntary urination control by brainstem neurons that relax the urethral sphincter

Nat Neurosci.

2018 Aug 13

Keller JA, Chen J, Simpson S, Wang EHJ, Lilascharoen V, George O, Lim BK, Stowers L.
PMID: 30104734 | DOI: 10.1038/s41593-018-0204-3

Voluntary urination ensures that waste is eliminated when safe and socially appropriate, even without a pressing urge. Uncontrolled urination, or incontinence, is a common problem with few treatment options. Normal urine release requires a small region in the brainstem known as Barrington's nucleus (Bar), but specific neurons that relax the urethral sphincter and enable urine flow are unknown. Here we identify a small subset of Bar neurons that control the urethral sphincter in mice. These excitatory neurons express estrogen receptor 1 (BarESR1), project to sphincter-relaxing interneurons in the spinal cord and are active during natural urination. Optogenetic stimulation of BarESR1 neurons rapidly initiates sphincter bursting and efficient voiding in anesthetized and behaving animals. Conversely, optogenetic and chemogenetic inhibition reveals their necessity in motivated urination behavior. The identification of these cells provides an expanded model for the control of urination and its dysfunction.

Defined Paraventricular Hypothalamic Populations Exhibit Differential Responses to Food Contingent on Caloric State

Cell Metab.

2018 Nov 21

Li C, Navarrete J, Liang-Guallpa J, Lu C, Funderburk SC, Chang RB, Liberles SD, Olson DP, Krashes MJ.
PMID: 30472090 | DOI: 10.1016/j.cmet.2018.10.016

Understanding the neural framework behind appetite control is fundamental to developing effective therapies to combat the obesity epidemic. The paraventricular hypothalamus (PVH) is critical for appetite regulation, yet, the real-time, physiological response properties of PVH neurons to nutrients are unknown. Using a combination of fiber photometry, electrophysiology, immunohistochemistry, and neural manipulation strategies, we determined the population dynamics of four molecularly delineated PVH subsets implicated in feeding behavior: glucagon-like peptide 1 receptor (PVHGlp1r), melanocortin-4 receptor (PVHMc4r), oxytocin (PVHOxt), and corticotropin-releasing hormone (PVHCrh). We identified both calorie- and state-dependent sustained activity increases and decreases in PVHGlp1r and PVHCrh populations, respectively, while observing transient bulk changes of PVHMc4r, but no response in PVHOxt, neurons to food. Furthermore, we highlight the role of PVHGlp1r neurons in orchestrating acute feeding behavior, independent of the anti-obesity drug liraglutide, and demonstrate the indispensability of PVHGlp1r and PVHMc4r, but not PVHOxt or PVHCrh neurons, in body weight maintenance.

Nutrient-sensing AgRP neurons relay control of liver autophagy during energy deprivation

Cell metabolism

2023 May 02

Chen, W;Mehlkop, O;Scharn, A;Nolte, H;Klemm, P;Henschke, S;Steuernagel, L;Sotelo-Hitschfeld, T;Kaya, E;Wunderlich, CM;Langer, T;Kononenko, NL;Giavalisco, P;Brüning, JC;
PMID: 37075752 | DOI: 10.1016/j.cmet.2023.03.019

Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.
Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons.

Nature.

2016 Mar 09

Mardinly AR, Spiegel I, Patrizi A, Centofante E, Bazinet JE, Tzeng CP, Mandel-Brehm C, Harmin DA, Adesnik H, Fagiolini M, Greenberg ME.
PMID: 26958833 | DOI: 10.1038/nature17187.

Inhibitory neurons regulate the adaptation of neural circuits to sensory experience, but the molecular mechanisms by which experience controls the connectivity between different types of inhibitory neuron to regulate cortical plasticity are largely unknown. Here we show that exposure of dark-housed mice to light induces a gene program in cortical vasoactive intestinal peptide (VIP)-expressing neurons that is markedly distinct from that induced in excitatory neurons and other subtypes of inhibitory neuron. We identify Igf1 as one of several activity-regulated genes that are specific to VIP neurons, and demonstrate that IGF1 functions cell-autonomously in VIP neurons to increase inhibitory synaptic input onto these neurons. Our findings further suggest that in cortical VIP neurons, experience-dependent gene transcription regulates visual acuity by activating the expression of IGF1, thus promoting the inhibition of disinhibitory neurons and affecting inhibition onto cortical pyramidal neurons.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?