Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (161)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • (-) Remove Gad1 filter Gad1 (90)
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • (-) Remove SLC32A1 filter SLC32A1 (74)
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (77) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (48) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (15) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope Fluorescent Multiplex Reagent kit (1) Apply RNAscope Fluorescent Multiplex Reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter

Research area

  • Neuroscience (151) Apply Neuroscience filter
  • Behavior (4) Apply Behavior filter
  • behavioral (4) Apply behavioral filter
  • Metabolism (4) Apply Metabolism filter
  • Addiction (3) Apply Addiction filter
  • Development (3) Apply Development filter
  • Sleep (3) Apply Sleep filter
  • Stress (3) Apply Stress filter
  • Aging (2) Apply Aging filter
  • Anxiety (2) Apply Anxiety filter
  • Autism spectrum disorder (2) Apply Autism spectrum disorder filter
  • CGT (2) Apply CGT filter
  • Nueroscience (2) Apply Nueroscience filter
  • Other: Metabolism (2) Apply Other: Metabolism filter
  • Pain (2) Apply Pain filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Anesthesia (1) Apply Anesthesia filter
  • Autism (1) Apply Autism filter
  • Autism spectrum disorders (1) Apply Autism spectrum disorders filter
  • Brain calcification (1) Apply Brain calcification filter
  • Cardiovascular Disease (1) Apply Cardiovascular Disease filter
  • Eating (1) Apply Eating filter
  • emotional valence (1) Apply emotional valence filter
  • Endocrinology (1) Apply Endocrinology filter
  • Epilepsy (1) Apply Epilepsy filter
  • Exercise (1) Apply Exercise filter
  • Fear (1) Apply Fear filter
  • Hearing (1) Apply Hearing filter
  • Inflammation (1) Apply Inflammation filter
  • Itch (1) Apply Itch filter
  • lncRNA (1) Apply lncRNA filter
  • Neuro development (1) Apply Neuro development filter
  • Obesity (1) Apply Obesity filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Apneas (1) Apply Other: Apneas filter
  • Other: Behavorial (1) Apply Other: Behavorial filter
  • Paralysis (1) Apply Paralysis filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • PTSD (1) Apply PTSD filter
  • Reward (1) Apply Reward filter
  • Reward-related learning (1) Apply Reward-related learning filter
  • Sex Differences (1) Apply Sex Differences filter
  • Skin (1) Apply Skin filter
  • Social Behavior (1) Apply Social Behavior filter
  • Spinal Cord injury (1) Apply Spinal Cord injury filter
  • Trauma (1) Apply Trauma filter
  • Wound healing (1) Apply Wound healing filter

Category

  • Publications (161) Apply Publications filter
Preproenkephalin-expressing ventral pallidal neurons control inhibitory avoidance learning.

Neurochem Int.

2019 Feb 21

Macpherson T, Mizoguchi H, Yamanaka A, Hikida T.
PMID: 30797970 | DOI: 10.1016/j.neuint.2019.02.011

The ventral pallidum (VP) is a critical component of the basal ganglia neurocircuitry regulating learning and decision making; however, its precise role in controlling associative learning of environmental stimuli conditioned to appetitive or aversive outcomes is still unclear. Here, we investigated the expression of preproenkephalin, a polypeptide hormone previously shown to be expressed in nucleus accumbens neurons controlling aversive learning, within GABAergic and glutamatergic VP neurons. Next, we explored the behavioral consequences of chemicogenetic inhibition or excitation of preproenkephalin-expressing VP neurons on associative learning of reward- or aversion-paired stimuli in autoshaping and inhibitory avoidance tasks, respectively. We reveal for the first time that preproenkephalin is expressed predominantly in GABAergic rather than glutamatergic VP neurons, and that excitation of these preproenkephalin-expressing VP neurons was sufficient to impair inhibitory avoidance learning. These findings indicate the necessity for inhibition of preproenkephalin-expressing VP neurons for avoidance learning, and suggest these neurons as a potential therapeutic target for psychiatric disorders associated with maladaptive aversive learning.

Striatal Low-Threshold Spiking Interneurons Regulate Goal-Directed Learning.

Neuron

2019 May 03

Holly EN, Davatolhagh MF, Choi K, Alabi OO, Vargas Cifuentes L, Fuccillo MV.
PMID: 31097361 | DOI: 10.1016/j.neuron.2019.04.016

The dorsomedial striatum (DMS) is critically involved in motor control and reward processing, but the specific neural circuit mediators are poorly understood. Recent evidence highlights the extensive connectivity of low-threshold spiking interneurons (LTSIs) within local striatal circuitry; however, the in vivo function of LTSIs remains largely unexplored. We employed fiber photometry to assess LTSI calcium activity in a range of DMS-mediated behaviors, uncovering specific reward-related activity that is down-modulated during goal-directed learning. Using two mechanistically distinct manipulations, we demonstrated that this down-modulation of LTSI activity is critical for acquisition of novel contingencies, but not for their modification. In contrast, continued LTSI activation slowed instrumental learning. Similar manipulations of fast-spiking interneurons did not reproduce these effects, implying a specific function of LTSIs. Finally, we revealed a role for the γ-aminobutyric acid (GABA)ergic functions of LTSIs in learning. Together, our data provide new insights into this striatal interneuron subclass as important gatekeepers of goal-directed learning.

Anatomical and single-cell transcriptional profiling of the murine habenular complex

Elife

2020 Feb 11

Wallace ML, Huang KW, Hochbaum D, Hyun M, Radeljic G, Sabatini BL
PMID: 32043968 | DOI: 10.7554/eLife.51271

The lateral habenula (LHb) is an epithalamic brain structure critical for processing and adapting to negative action outcomes. However, despite the importance of LHb to behavior and the clear anatomical and molecular diversity of LHb neurons, the neuron types of the habenula remain unknown. Here, we use high-throughput single-cell transcriptional profiling, monosynaptic retrograde tracing, and multiplexed FISH to characterize the cells of the mouse habenula. We find five subtypes of neurons in the medial habenula (MHb) that are organized into anatomical subregions. In the LHb, we describe four neuronal subtypes and show that they differentially target dopaminergic and GABAergic cells in the ventral tegmental area (VTA). These data provide a valuable resource for future study of habenular function and dysfunction and demonstrate neuronal subtype specificity in the LHb-VTA circuit
Adnp-mutant mice with cognitive inflexibility, CaMKIIα hyperactivity, and synaptic plasticity deficits

Molecular psychiatry

2023 Jun 26

Cho, H;Yoo, T;Moon, H;Kang, H;Yang, Y;Kang, M;Yang, E;Lee, D;Hwang, D;Kim, H;Kim, D;Kim, JY;Kim, E;
PMID: 37365244 | DOI: 10.1038/s41380-023-02129-5

ADNP syndrome, involving the ADNP transcription factor of the SWI/SNF chromatin-remodeling complex, is characterized by developmental delay, intellectual disability, and autism spectrum disorders (ASD). Although Adnp-haploinsufficient (Adnp-HT) mice display various phenotypic deficits, whether these mice display abnormal synaptic functions remain poorly understood. Here, we report synaptic plasticity deficits associated with cognitive inflexibility and CaMKIIα hyperactivity in Adnp-HT mice. These mice show impaired and inflexible contextual learning and memory, additional to social deficits, long after the juvenile-stage decrease of ADNP protein levels to ~10% of the newborn level. The adult Adnp-HT hippocampus shows hyperphosphorylated CaMKIIα and its substrates, including SynGAP1, and excessive long-term potentiation that is normalized by CaMKIIα inhibition. Therefore, Adnp haploinsufficiency in mice leads to cognitive inflexibility involving CaMKIIα hyperphosphorylation and excessive LTP in adults long after its marked expressional decrease in juveniles.
Neuronal cell types, projections, and spatial organization of the central amygdala

iScience

2022 Dec 22

O'Leary, TP;Kendrick, RM;Bristow, BN;Sullivan, KE;Wang, L;Clements, J;Lemire, AL;Cembrowski, MS;
PMID: 36425768 | DOI: 10.1016/j.isci.2022.105497

The central amygdala (CEA) has been richly studied for interpreting function and behavior according to specific cell types and circuits. Such work has typically defined molecular cell types by classical inhibitory marker genes; consequently, whether marker-gene-defined cell types exhaustively cover the CEA and co-vary with connectivity remains unresolved. Here, we combined single-cell RNA sequencing, multiplexed fluorescent in situ hybridization, immunohistochemistry, and long-range projection mapping to derive a "bottom-up" understanding of CEA cell types. In doing so, we identify two major cell types, encompassing one-third of all CEA neurons, that have gone unresolved in previous studies. In spatially mapping these novel types, we identify a non-canonical CEA subdomain associated with Nr2f2 expression and uncover an Isl1-expressing medial cell type that accounts for many long-range CEA projections. Our results reveal new CEA organizational principles across cell types and spatial scales and provide a framework for future work examining cell-type-specific behavior and function.
HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus

Nature metabolism

2022 Oct 01

Steuernagel, L;Lam, BYH;Klemm, P;Dowsett, GKC;Bauder, CA;Tadross, JA;Hitschfeld, TS;Del Rio Martin, A;Chen, W;de Solis, AJ;Fenselau, H;Davidsen, P;Cimino, I;Kohnke, SN;Rimmington, D;Coll, AP;Beyer, A;Yeo, GSH;Brüning, JC;
PMID: 36266547 | DOI: 10.1038/s42255-022-00657-y

The hypothalamus plays a key role in coordinating fundamental body functions. Despite recent progress in single-cell technologies, a unified catalog and molecular characterization of the heterogeneous cell types and, specifically, neuronal subtypes in this brain region are still lacking. Here, we present an integrated reference atlas, 'HypoMap,' of the murine hypothalamus, consisting of 384,925 cells, with the ability to incorporate new additional experiments. We validate HypoMap by comparing data collected from Smart-Seq+Fluidigm C1 and bulk RNA sequencing of selected neuronal cell types with different degrees of cellular heterogeneity. Finally, via HypoMap, we identify classes of neurons expressing glucagon-like peptide-1 receptor (Glp1r) and prepronociceptin (Pnoc), and validate them using single-molecule in situ hybridization. Collectively, HypoMap provides a unified framework for the systematic functional annotation of murine hypothalamic cell types, and it can serve as an important platform to unravel the functional organization of hypothalamic neurocircuits and to identify druggable targets for treating metabolic disorders.
Control of non-REM sleep by ventrolateral medulla glutamatergic neurons projecting to the preoptic area

Nature communications

2022 Aug 12

Teng, S;Zhen, F;Wang, L;Schalchli, JC;Simko, J;Chen, X;Jin, H;Makinson, CD;Peng, Y;
PMID: 35961989 | DOI: 10.1038/s41467-022-32461-3

Understanding the neural mechanisms underlying sleep state transitions is a fundamental goal of neurobiology and important for the development of new treatments for insomnia and other sleep disorders. Yet, brain circuits controlling this process remain poorly understood. Here we identify a population of sleep-active glutamatergic neurons in the ventrolateral medulla (VLM) that project to the preoptic area (POA), a prominent sleep-promoting region, in mice. Microendoscopic calcium imaging demonstrate that these VLM glutamatergic neurons display increased activity during the transitions from wakefulness to Non-Rapid Eye Movement (NREM) sleep. Chemogenetic silencing of POA-projecting VLM neurons suppresses NREM sleep, whereas chemogenetic activation of these neurons promotes NREM sleep. Moreover, we show that optogenetic activation of VLM glutamatergic neurons or their projections in the POA initiates NREM sleep in awake mice. Together, our findings uncover an excitatory brainstem-hypothalamic circuit that controls the wake-sleep transitions.
NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety

Nature communications

2021 Sep 30

Zhang, X;Liu, Y;Hong, X;Li, X;Meshul, CK;Moore, C;Yang, Y;Han, Y;Li, WG;Qi, X;Lou, H;Duan, S;Xu, TL;Tong, X;
PMID: 34593806 | DOI: 10.1038/s41467-021-25956-y

NG2 glia, also known as oligodendrocyte precursor cells (OPCs), play an important role in proliferation and give rise to myelinating oligodendrocytes during early brain development. In contrast to other glial cell types, the most intriguing aspect of NG2 glia is their ability to directly sense synaptic inputs from neurons. However, whether this synaptic interaction is bidirectional or unidirectional, or its physiological relevance has not yet been clarified. Here, we report that NG2 glia form synaptic complexes with hippocampal interneurons and that selective photostimulation of NG2 glia (expressing channelrhodopsin-2) functionally drives GABA release and enhances inhibitory synaptic transmission onto proximal interneurons in a microcircuit. The mechanism involves GAD67 biosynthesis and VAMP-2 containing vesicular exocytosis. Further, behavioral assays demonstrate that NG2 glia photoactivation triggers anxiety-like behavior in vivo and contributes to chronic social defeat stress.
A hypothalamus-habenula circuit controls aversion.

Mol Psychiatry.

2019 Feb 12

Lazaridis I, Tzortzi O, Weglage M, Märtin A, Xuan Y, Parent M, Johansson Y, Fuzik J, Fürth D, Fenno LE, Ramakrishnan C, Silberberg G, Deisseroth K, Carlén M, Meletis K.
PMID: 30755721 | DOI: 10.1038/s41380-019-0369-5

Encoding and predicting aversive events are critical functions of circuits that support survival and emotional well-being. Maladaptive circuit changes in emotional valence processing can underlie the pathophysiology of affective disorders. The lateral habenula (LHb) has been linked to aversion and mood regulation through modulation of the dopamine and serotonin systems. We have defined the identity and function of glutamatergic (Vglut2) control of the LHb, comparing the role of inputs originating in the globus pallidus internal segment (GPi), and lateral hypothalamic area (LHA), respectively. We found that LHb-projecting LHA neurons, and not the proposed GABA/glutamate co-releasing GPi neurons, are responsible for encoding negative value. Monosynaptic rabies tracing of the presynaptic organization revealed a predominantly limbic input onto LHA Vglut2 neurons, while sensorimotor inputs were more prominent onto GABA/glutamate co-releasing GPi neurons. We further recorded the activity of LHA Vglut2 neurons, by imaging calcium dynamics in response to appetitive versus aversive events in conditioning paradigms. LHA Vglut2 neurons formed activity clusters representing distinct reward or aversion signals, including a population that responded to mild foot shocks and predicted aversive events. We found that the LHb-projecting LHA Vglut2 neurons encode negative valence and rapidly develop a prediction signal for negative events. These findings establish the glutamatergic LHA-LHb circuit as a critical node in value processing.

The neurons that restore walking after paralysis

Nature

2022 Nov 01

Kathe, C;Skinnider, MA;Hutson, TH;Regazzi, N;Gautier, M;Demesmaeker, R;Komi, S;Ceto, S;James, ND;Cho, N;Baud, L;Galan, K;Matson, KJE;Rowald, A;Kim, K;Wang, R;Minassian, K;Prior, JO;Asboth, L;Barraud, Q;Lacour, SP;Levine, AJ;Wagner, F;Bloch, J;Squair, JW;Courtine, G;
PMID: 36352232 | DOI: 10.1038/s41586-022-05385-7

A spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord<sup>1-3</sup> applied during neurorehabilitation<sup>4,5</sup> (EES<sup>REHAB</sup>) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking. We hypothesized that this unexpected reduction reflects activity-dependent selection of specific neuronal subpopulations that become essential for a patient to walk after spinal cord injury. To identify these putative neurons, we modelled the technological and therapeutic features underlying EES<sup>REHAB</sup> in mice. We applied single-nucleus RNA sequencing<sup>6-9</sup> and spatial transcriptomics<sup>10,11</sup> to the spinal cords of these mice to chart a spatially resolved molecular atlas of recovery from paralysis. We then employed cell type<sup>12,13</sup> and spatial prioritization to identify the neurons involved in the recovery of walking. A single population of excitatory interneurons nested within intermediate laminae emerged. Although these neurons are not required for walking before spinal cord injury, we demonstrate that they are essential for the recovery of walking with EES following spinal cord injury. Augmenting the activity of these neurons phenocopied the recovery of walking enabled by EES<sup>REHAB</sup>, whereas ablating them prevented the recovery of walking that occurs spontaneously after moderate spinal cord injury. We thus identified a recovery-organizing neuronal subpopulation that is necessary and sufficient to regain walking after paralysis. Moreover, our methodology establishes a framework for using molecular cartography to identify the neurons that produce complex behaviours.
Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice.

Endocrinology.

2016 Jun 06

de Kloet AD, Pitra S, Wang L, Hiller H, Pioquinto DJ, Smith JA, Sumners C, Stern JE, Krause EG.
PMID: 27267713 | DOI: -

It is known that angiotensin-II acts at its type-1 receptor to stimulate vasopressin (AVP) secretion, which may contribute to angiotensin-II-induced hypertension. Less well-known, is the impact angiotensin type-2 receptor (AT2R) activation on these processes. Studies conducted in a transgenic AT2R enhanced green fluorescent protein (eGFP) reporter mouse revealed that although AT2R are not themselves localized to AVP neurons within the paraventricular nucleus of the hypothalamus (PVN), they are localized to neurons that extend processes into the PVN. In the present set of studies, we set out to characterize the origin, phenotype and function of nerve terminals within the PVN that arise from AT2R-eGFP-positive neurons and synapse onto AVP neurons. Initial experiments combined genetic and neuroanatomical techniques to determine that gamma-aminobutyric acid (GABA)ergic neurons derived from the peri-PVN area containing AT2R make appositions onto AVP neurons within the PVN, thereby positioning AT2R to negatively regulate neuroendocrine secretion. Subsequent patch-clamp electrophysiological experiments revealed that selective activation of AT2R in the peri-PVN area using Compound 21 facilitates inhibitory (i.e., GABAergic) neurotransmission and leads to reduced activity of AVP neurons within the PVN. Final experiments determined the functional impact of AT2R activation by testing the effects of Compound 21 on plasma AVP levels. Collectively, these experiments revealed that AT2R expressing neurons make GABAergic synapses onto AVP neurons that inhibit AVP neuronal activity and suppress baseline systemic AVP levels. These findings have direct implications in the targeting of AT2R for disorders of AVP secretion and also for the alleviation of high blood pressure.

Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors

Neuropharmacology

2016 Jan 06

Wanga L, de Kloet AD, Patia D, Hillera H, Smitha JA, Pioquintob DJ, Ludin JA, Oh SP, Katovicha MJ, Fraziera CJ, Rsaizada MK, Krause EG.
PMID: - | DOI: 10.1016/j.neuropharm.2015.12.026

Over-activation of brain renin-angiotensin system (RAS) has been implicated in the etiology of anxiety disorders. Angiotensin converting enzyme (ACE2) inhibits RAS activity by converting angiotensin II, the effector peptide of RAS, to angiotensin-(1-7), which activates Mas receptors (MasR). Whether increasing brain ACE2 activity reduces anxiety by stimulating central MasR is unknown. To test the hypothesis that increasing brain ACE2 activity reduces anxiety-like behavior via central MasR stimulation, we generated male mice overexpressing ACE2 (ACE2 KI mice) and wild type littermate controls (WT). ACE2 KI mice explored the open arms of the elevated plus maze (EPM) significantly more than WT, suggesting increasing ACE2 activity is anxiolytic. Central delivery of diminazene aceturate, an ACE2 activator, to C57BL/6 mice also reduced anxiety-like behavior in the EPM, but centrally administering ACE2 KI mice A-779, a MasR antagonist, abolished their anxiolytic phenotype, suggesting that ACE2 reduces anxiety-like behavior by activating central MasR. To identify the brain circuits mediating these effects, we measured Fos, a marker of neuronal activation, subsequent to EPM exposure and found that ACE2 KI mice had decreased Fos in the bed nucleus of stria terminalis but had increased Fos in the basolateral amygdala (BLA). Within the BLA, we determined that ∼62% of GABAergic neurons contained MasR mRNA and expression of MasR mRNA was upregulated by ACE2 overexpression, suggesting that ACE2 may influence GABA neurotransmission within the BLA via MasR activation. Indeed, ACE2 overexpression was associated with increased frequency of spontaneous inhibitory postsynaptic currents (indicative of presynaptic release of GABA) onto BLA pyramidal neurons and central infusion of A-779 eliminated this effect. Collectively, these results suggest that ACE2 may reduce anxiety-like behavior by activating central MasR that facilitate GABA release onto pyramidal neurons within the BLA..

Pages

  • « first
  • ‹ previous
  • …
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?