Seung BJ, Cho SH, Kim SH, Lim HY, Sur JH
PMID: 32059046 | DOI: 10.1371/journal.pone.0229031
Spontaneously occurring canine mammary gland tumors share many features with human breast cancer, including biological behavior and histologic features. Compared to transgenic murine model, canine models have advantages including naturally occurring models of human diseases and cancer. In humans, breast cancer is divided into molecular subtypes based on ER, PR, and HER2 expression. In contrast with humans, few studies have evaluated these subtypes in canine mammary gland tumors, including expression of HER2. HER2 expression in canine mammary tissues has been further complicated by controversy regarding the antibody's specificity. This study aimed to investigate c-erbB2 mRNA expression in retrospective formalin-fixed paraffin embedded samples, using RNA in situ hybridization with a novel quantitative assay and to compare this method with immunohistochemistry. Using 48 canine mammary tumor samples and 14 non-neoplastic canine mammary tissues, RNA in situ hybridization was performed with RNAscopeᆴ using a canine-specific target gene probe (ERBB2), and quantitative measurement was performed using the housekeeping gene (POLR2A) to calculate the target gene/housekeeping gene ratio. The ratio of ERBB2/POLR2A was quantified using open-source image analysis programs and compared with the immunohistochemistry results. A significant correlation was observed between the HER2 immunohistochemistry score and ERBB2/POLR2A RNA in situ hybridization (P < 0.001). When the HER2 immunohistochemistry score was 3+, significantly higher expression of HER2 mRNA was observed by RNA in situ hybridization. Interestingly, HER2 mRNA was also observed in non-neoplastic mammary tissues by RNA in situ hybridization. This assay potentially facilitates the reliable quantification of mRNA expression levels in retrospective formalin-fixed paraffin-embedded samples. Further studies are required to elucidate the role of HER2 in canine mammary gland tumors and to implement clinical trials in dogs
Yang, Y;Ha, S;Jeong, S;Jang, CW;Kim, J;Im, DS;Chung, HY;Chung, KW;
PMID: 34619300 | DOI: 10.1016/j.tox.2021.152973
Chronic kidney disease (CKD) is characterized by persistent abnormalities in kidney function, accompanied by structural changes. Interstitial fibrosis, characterized by the accumulation of extracellular matrix (ECM) proteins, is frequently detected during CKD development. Given the multiple underlying causes of CKD, numerous animal models have been developed to advance our understanding of human nephropathy. Herein, we compared two reliable toxin-induced mouse kidney fibrosis models in terms of fibrosis and inflammation. Administration of folic acid (250 mg/kg, intraperitoneal injection) or an adenine diet (0.25 % for three weeks) afforded similar effects on kidney function, as detected by increased serum nitrogen levels. In addition, the kidneys exhibited a similar extent of tubule dilation and kidney damage. The degree of fibrosis was compared using various biological methods. Although both models developed a significant fibrotic phenotype, the adenine diet-fed model showed a marginally higher increase in fibrosis than the folic acid model, as reflected by increased kidney ECM gene and protein levels. We further compared inflammatory responses in the kidneys. Interestingly, pro-inflammatory responses, including cytokine expression and immune cell infiltration, were significantly increased in adenine diet-fed kidneys. Furthermore, collagen expression was identified in the macrophage-infiltrated region, implying the importance of inflammation in fibrogenesis. Collectively, we observed that the adenine diet-fed kidney fibrosis model presented a higher inflammatory response with increased fibrosis when compared with the folic acid-induced kidney fibrosis model, indicating the importance of the inflammatory response in fibrosis development.
Biochimica et biophysica acta. Molecular basis of disease
Ha, S;Yang, Y;Kim, BM;Kim, J;Son, M;Kim, D;Yu, HS;Im, D;Chung, HY;Chung, KW;
PMID: 35772632 | DOI: 10.1016/j.bbadis.2022.166474
A high-fat diet (HFD) is a major risk factor for chronic kidney disease. Although HFD promotes renal injury, characterized by increased inflammation and oxidative stress leading to fibrosis, the underlying mechanism remains elusive. Here, we investigated the role and mechanism of protease-activating receptor 2 (PAR2) activation during HFD-induced renal injury in C57/BL6 mice. HFD for 16 weeks resulted in kidney injury, manifested by increased blood levels of blood urea nitrogen, increased levels of oxidative stress with inflammation, and structural changes in the kidney tubules. HFD-fed kidneys showed elevated PAR2 expression level in the tubular epithelial region. To elucidate the role of PAR2, PAR2 knockout mice and their littermates were administered HFD. PAR2 deficient kidneys showed reduced extent of renal injury. PAR2 deficient kidneys showed significantly decreased levels of inflammatory gene expression and macrophage infiltration, followed by reduced accumulation of extracellular matrix proteins. Using NRK52E kidney epithelial cells, we further elucidated the mechanism and role of PAR2 activation during renal injury. Palmitate treatment increased PAR2 expression level in NRK52E cells and scavenging of oxidative stress blocked PAR2 expression. Under palmitate-treated conditions, PAR2 agonist-induced NF-κB activation level was higher with increased chemokine expression level in the cells. These changes were attenuated by the depletion of oxidative stress. Taken together, our results suggest that HFD-induced PAR2 activation is associated with increased levels of renal oxidative stress, inflammatory response, and fibrosis.