Hypertension research : official journal of the Japanese Society of Hypertension
Ochiai, K;Mochida, Y;Nagase, T;Fukuhara, H;Yamaguchi, Y;Nagase, M;
PMID: 36810623 | DOI: 10.1038/s41440-023-01219-9
The recent discovery of mechanosensitive ion channels has promoted mechanobiological research in the field of hypertension and nephrology. We previously reported Piezo2 expression in mouse mesangial and juxtaglomerular renin-producing cells, and its modulation by dehydration. This study aimed to investigate how Piezo2 expression is altered in hypertensive nephropathy. The effects of the nonsteroidal mineralocorticoid receptor blocker, esaxerenone, were also analyzed. Four-week-old Dahl salt-sensitive rats were randomly assigned to three groups: rats fed a 0.3% NaCl diet (DSN), rats fed a high 8% NaCl diet (DSH), and rats fed a high salt diet supplemented with esaxerenone (DSH + E). After six weeks, DSH rats developed hypertension, albuminuria, glomerular and vascular injuries, and perivascular fibrosis. Esaxerenone effectively decreased blood pressure and ameliorated renal damage. In DSN rats, Piezo2 was expressed in Pdgfrb-positive mesangial and Ren1-positive cells. Piezo2 expression in these cells was enhanced in DSH rats. Moreover, Piezo2-positive cells accumulated in the adventitial layer of intrarenal small arteries and arterioles in DSH rats. These cells were positive for Pdgfrb, Col1a1, and Col3a1, but negative for Acta2 (αSMA), indicating that they were perivascular mesenchymal cells different from myofibroblasts. Piezo2 upregulation was reversed by esaxerenone treatment. Furthermore, Piezo2 inhibition by siRNA in the cultured mesangial cells resulted in upregulation of Tgfb1 expression. Cyclic stretch also upregulated Tgfb1 in both transfections of control siRNA and Piezo2 siRNA. Our findings suggest that Piezo2 may have a contributory role in modulating the pathogenesis of hypertensive nephrosclerosis and have also highlighted the therapeutic effects of esaxerenone on salt-induced hypertensive nephropathy. Mechanochannel Piezo2 is known to be expressed in the mouse mesangial cells and juxtaglomerular renin-producing cells, and this was confirmed in normotensive Dahl-S rats. In salt-induced hypertensive Dahl-S rats, Piezo2 upregulation was observed in the mesangial cells, renin cells, and notably, perivascular mesenchymal cells, suggesting its involvement in kidney fibrosis.
Khom, S;Borgonetti, V;Vozella, V;Kirson, D;Rodriguez, L;Gandhi, P;Bianchi, P;Snyder, A;Vlkolinsky, R;Bajo, M;Oleata, C;Ciccocioppo, R;Roberto, M;
| DOI: 10.1016/j.ynstr.2023.100547
Impairments in the function of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced glucocorticoid receptor (GR) activity in the central amygdala (CeA) are critical mechanisms in the pathogenesis of alcohol use disorder (AUD). The GR antagonist mifepristone attenuates craving in AUD patients, alcohol consumption in AUD models, and decreases CeA γ-aminobutyric acid (GABA) transmission in alcohol-dependent rats. Previous studies suggest elevated GR activity in the CeA of male alcohol-preferring Marchigian-Sardinian (msP) rats, but its contribution to heightened CeA GABA transmission driving their characteristic post-dependent phenotype is largely unknown. We determined Nr3c1 (the gene encoding GR) gene transcription in the CeA in male and female msP and Wistar rats using in situ hybridization and studied acute effects of mifepristone (10 μM) and its interaction with ethanol (44 mM) on pharmacologically isolated spontaneous inhibitory postsynaptic currents (sIPSCs) and electrically evoked inhibitory postsynaptic potentials (eIPSPs) in the CeA using ex vivo slice electrophysiology. Female rats of both genotypes expressed more CeA GRs than males, suggesting a sexually dimorphic GR regulation of CeA activity. Mifepristone reduced sIPSC frequencies (GABA release) and eIPSP amplitudes in msP rats of both sexes, but not in their Wistar counterparts; however, it did not prevent acute ethanol-induced increase in CeA GABA transmission in male rats. In msP rats, GR regulates CeA GABAergic signaling under basal conditions, indicative of intrinsically active GR. Thus, enhanced GR function in the CeA represents a key mechanism contributing to maladaptive behaviors associated with AUD.
X-linked serotonin 2C receptor is associated with a non-canonical pathway for sudden unexpected death in epilepsy
Massey, C;Thompson, S;Ostrom, R;Drabek, J;Sveinsson, O;Tomson, T;Haas, E;Mena, O;Goldman, A;Noebels, J;
| DOI: 10.1093/braincomms/fcab149
Sudden Unexpected Death in Epilepsy is a leading cause of epilepsy-related mortality, and the analysis of mouse Sudden Unexpected Death in Epilepsy models is steadily revealing a spectrum of inherited risk phenotypes based on distinct genetic mechanisms. Serotonin (5-HT) signalling enhances post-ictal cardiorespiratory drive and, when elevated in the brain, reduces death following evoked audiogenic brainstem seizures in inbred mouse models. However, no gene in this pathway has yet been linked to a spontaneous epilepsy phenotype, the defining criterion of Sudden Unexpected Death in Epilepsy. Most monogenic models of Sudden Unexpected Death in Epilepsy invoke a failure of inhibitory synaptic drive as a critical pathogenic step. Accordingly, the G protein-coupled, membrane serotonin receptor 5-HT2C inhibits forebrain and brainstem networks by exciting GABAergic interneurons, and deletion of this gene lowers the threshold for lethal evoked audiogenic seizures. Here, we characterize epileptogenesis throughout the lifespan of mice lacking X-linked, 5-HT2C receptors (loxTB Htr2c). We find that loss of Htr2c generates a complex, adult-onset spontaneous epileptic phenotype with a novel progressive hyperexcitability pattern of absences, non-convulsive, and convulsive behavioural seizures culminating in late onset sudden mortality predominantly in male mice. RNAscope localized Htr2c mRNA in subsets of Gad2+ GABAergic neurons in forebrain and brainstem regions. To evaluate the contribution of 5-HT2C receptor-mediated inhibitory drive, we selectively spared their deletion in GAD2+ GABAergic neurons of pan-deleted loxTB Htr2c mice, yet unexpectedly found no amelioration of survival or epileptic phenotype, indicating that expression of 5-HT2C receptors in GAD2+ inhibitory neurons was not sufficient to prevent hyperexcitability and lethal seizures. Analysis of human Sudden Unexpected Death in Epilepsy and epilepsy genetic databases identified an enrichment of HTR2C non-synonymous variants in Sudden Unexpected Death in Epilepsy cases. Interestingly, while early lethality is not reflected in the mouse model, we also identified variants mainly among male Sudden Infant Death Syndrome patients. Our findings validate HTR2C as a novel, sex-linked candidate gene modifying Sudden Unexpected Death in Epilepsy risk, and demonstrate that the complex epilepsy phenotype does not arise solely from 5-HT2C-mediated synaptic disinhibition. These results strengthen the evidence for the serotonin hypothesis of Sudden Unexpected Death in Epilepsy risk in humans, and advance current efforts to develop gene-guided interventions to mitigate premature mortality in epilepsy.
Chen, CP;Zhang, J;Zhang, B;Hassan, MG;Hane, K;
| DOI: 10.1002/jbm4.10638
The adaptive response of the mandible and temporomandibular joint (TMJ) to altered occlusion in juvenile patients is presently unclear. To address this question, we established a mouse model in which all molars were extracted from the maxillary right quadrant in pre-pubertal, 3-week-old mice and analyzed morphological, tissue, cellular, and molecular changes in the mandible and condyle three weeks later. Unilateral loss of maxillary molars led to significant, robust, bilateral changes, primarily in condylar morphology, including antero-posterior narrowing of the condylar head and neck and increased convexity at the condylar surface, as determined by geometric morphometric analysis. Furthermore, both condyles in experimental mice exhibited a degenerative phenotype, which included decreased bone volume and increased mineral density near the condylar head surface compared to control mice. Changes in condylar morphology and mineralized tissue composition were associated with alterations in the cellular architecture of the mandibular condylar cartilage, including increased expression of markers for mature (Col2a1) and hypertrophic (Col10a1) chondrocytes, suggesting a shift towards differentiating chondrocytes. Our results show significant bilateral condylar morphological changes, alterations in tissue composition, cellular organization, and molecular expression, as well as degenerative disease, in response to the unilateral loss of teeth. Our study provides a relatively simple, tractable mouse tooth extraction system that will be of utility in uncovering the cellular and molecular mechanisms of condylar and mandibular adaptation in response to altered occlusion.
Nielsen MFB, Mortensen MB, Detlefsen S.
PMID: 30416314 | DOI: 10.3748/wjg.v24.i41.4663
Abstract
AIM:
To determine whether it is possible to identify different immune phenotypic subpopulations of cancer-associated fibroblasts (CAFs) in pancreatic cancer (PC).
METHODS:
We defined four different stromal compartments in surgical specimens with PC: The juxtatumoural, peripheral, lobular and septal stroma. Tissue microarrays were produced containing all pre-defined PC compartments, and the expression of 37 fibroblast (FB) and 8 extracellular matrix (ECM) markers was evaluated by immunohistochemistry, immunofluorescence (IF), double-IF, and/or in situ hybridization. The compartment-specific mean labelling score was determined for each marker using a four-tiered scoring system. DOG1 gene expression was examined by quantitative reverse transcription PCR (qPCR).
RESULTS:
CD10, CD271, cytoglobin, DOG1, miR-21, nestin, and tenascin C exhibited significant differences in expression profiles between the juxtatumoural and peripheral compartments. The expression of CD10, cytoglobin, DOG1, nestin, and miR-21 was moderate/strong in juxtatumoural CAFs (j-CAFs) and barely perceptible/weak in peripheral CAFs (p-CAFs). The upregulation of DOG1 gene expression in PC compared to normal pancreas was verified by qPCR. Tenascin C expression was strong in the juxtatumoural ECM and barely perceptible/weak in the peripheral ECM. CD271 expression was barely perceptible in j-CAFs but moderate in the other compartments. Galectin-1 was stronger expressed in j-CAFs vs septal fibroblasts, PDGF-Rβ, tissue transglutaminase 2, and hyaluronic acid were stronger expressed in lobular fibroblasts vs p-CAFs, and plectin-1 was stronger expressed in j-CAFs vs l-FBs. The expression of the remaining 33 markers did not differ significantly when related to the quantity of CAFs/FBs or the amount of ECM in the respective compartments.
CONCLUSION:
Different immune phenotypic CAF subpopulations can be identified in PC, using markers such as cytoglobin, CD271, and miR-21. Future studies should determine whether CAF subpopulations have different functional properties.
WNT16 is Robustly Increased by Oncostatin M in Mouse Calvarial Osteoblasts and Acts as a Negative Feedback Regulator of Osteoclast Formation Induced by Oncostatin M
Journal of inflammation research
Henning, P;Movérare-Skrtic, S;Westerlund, A;Chaves de Souza, PP;Floriano-Marcelino, T;Nilsson, KH;El Shahawy, M;Ohlsson, C;Lerner, UH;
PMID: 34566421 | DOI: 10.2147/JIR.S323435
Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family.The expression and regulation of Wnt16 in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing. The importance of oncostatin M (OSM)-induced WNT16 expression for osteoclastogenesis was studied in cells from Wnt16-deficient and wild-type mice.We found that IL-6/sIL-6R and OSM induce the expression of Wnt16 in primary mouse calvarial osteoblasts, with OSM being the most robust stimulator. The induction of Wnt16 by OSM was dependent on gp130 and OSM receptor (OSMR), and downstream signaling by the SHC1/STAT3 pathway, but independent of ERK. Stimulation of the calvarial cells with OSM resulted in enhanced numbers of mature, oversized osteoclasts when cells were isolated from Wnt16 deficient mice compared to cells from wild-type mice. OSM did not affect Wnt16 mRNA expression in bone marrow cell cultures, explained by the finding that Wnt16 and Osmr are expressed in distinctly different cells in bone marrow, nor was osteoclast differentiation different in OSM-stimulated bone marrow cell cultures isolated from Wnt16-/- or wild-type mice. Furthermore, we found that Wnt16 expression is substantially lower in cells from bone marrow compared to calvarial osteoblasts.These findings demonstrate that OSM is a robust stimulator of Wnt16 mRNA in calvarial osteoblasts and that WNT16 acts as a negative feedback regulator of OSM-induced osteoclast formation in the calvarial bone cells, but not in the bone marrow.
Shi MM, Fan KM, Qiao YN, Xu JH, Qiu LJ, Li X, Liu Y, Qian ZQ, Wei CL, Han J, Fan J, Tian YF, Ren W, Liu ZQ.
PMID: 31142818 | DOI: 10.1038/s41380-019-0435-z
Stressful life events induce abnormalities in emotional and cognitive behaviour. The endogenous opioid system plays an essential role in stress adaptation and coping strategies. In particular, the µ-opioid receptor (μR), one of the major opioid receptors, strongly influences memory processing in that alterations in μR signalling are associated with various neuropsychiatric disorders. However, it remains unclear whether μR signalling contributes to memory impairments induced by acute stress. Here, we utilized pharmacological methods and cell-type-selective/non-cell-type-selective μR depletion approaches combined with behavioural tests, biochemical analyses, and in vitro electrophysiological recordings to investigate the role of hippocampal μR signalling in memory-retrieval impairment induced by acute elevated platform (EP) stress in mice. Biochemical and molecular analyses revealed that hippocampal μRs were significantly activated during acute stress. Blockage of hippocampal μRs, non-selective deletion of μRs or selective deletion of μRs on GABAergic neurons (μRGABA) reversed EP-stress-induced impairment of memory retrieval, with no effect on the elevation of serum corticosterone after stress. Electrophysiological results demonstrated that stress depressed hippocampal GABAergic synaptic transmission to CA1 pyramidal neurons, thereby leading to excitation/inhibition (E/I) imbalance in a μRGABA-dependent manner. Pharmaceutically enhancing hippocampal GABAAreceptor-mediated inhibitory currents in stressed mice restored their memory retrieval, whereas inhibiting those currents in the unstressed mice mimicked the stress-induced impairment of memory retrieval. Our findings reveal a novel pathway in which endogenous opioids recruited by acute stress predominantly activate μRGABA to depress GABAergic inhibitory effects on CA1 pyramidal neurons, which subsequently alters the E/I balance in the hippocampus and results in impairment of memory retrieval.
Endothelin receptors in renal interstitial cells do not contribute to the development of fibrosis during experimental kidney disease
Pflugers Archiv : European journal of physiology
Neder, TH;Schrankl, J;Fuchs, MAA;Broeker, KAE;Wagner, C;
PMID: 34355294 | DOI: 10.1007/s00424-021-02604-4
Renal interstitial fibrosis is characterized by the development of myofibroblasts, originating from resident renal and immigrating cells. Myofibroblast formation and extracellular matrix production during kidney damage are triggered by various factors. Among these, endothelins have been discussed as potential modulators of renal fibrosis. Utilizing mouse models of adenine nephropathy (AN) and unilateral ureter occlusion (UUO), this study aimed to investigate the contribution of endothelin signaling in stromal mesenchymal resident renal interstitial cells. We found in controls that adenine feeding and UUO caused marked upregulations of endothelin-1 (ET-1) gene expression in endothelial and in tubular cells and a strong upregulation of ETA-receptor (ETA-R) gene expression in interstitial and mesangial cells, while the gene expression of ETB-receptor (ETB-R) did not change. Conditional deletion of ETA-R and ETB-R gene expression in the FoxD1 stromal cell compartment which includes interstitial cells significantly reduced renal ETA-R gene expression and moderately lowered renal ETB-R gene expression. ET receptor (ET-R) deletion exerted no apparent effects on kidney development nor on kidney function. Adenine feeding and UUO led to similar increases in profibrotic and proinflammatory gene expression in control as well as in ETAflflETBflfl FoxD1Cre+ mice (ET-Ko). In summary, our findings suggest that adenine feeding and UUO activate endothelin signaling in interstitial cells which is due to upregulated ETA-R expression and enhanced renal ET-1 production Our data also suggest that the activation of endothelin signaling in interstitial cells has less impact for the development of experimentally induced fibrosis.
Domi E, Uhrig S, Soverchia L, Spanagel R, Hansson AC, Barbier E, Heilig M, Ciccocioppo R, Ubaldi M.
PMID: 27810934 | DOI: 10.1523/JNEUROSCI.4127-15.2016
PPARγ is one of the three isoforms of the Peroxisome Proliferator-Activated Receptors (PPARs). PPARγ is activated by thiazolidinediones such as pioglitazone, and it is targeted to treat insulin resistance. PPARγ is densely expressed in brain areas involved in regulation of motivational and emotional processes.Here, we investigated the role of PPARγ in the brain and explored its role in anxiety and stress responses in mice. The results show that stimulation of PPARγ by pioglitazone did not affect basal anxiety but fully prevented the anxiogenic effect of acute stress. Using mice with genetic ablation of neuronal PPARγ (PPARγNestinCre), we demonstrated that a lack of receptors, specifically in neurons, exacerbated basal anxiety and enhanced stress sensitivity. The administration of GW9662, a selective PPARγ antagonist, elicited a marked anxiogenic response in PPARγ wild-type (Wt) but not in PPARγNestinCre KO mice. Using c-Fos immunohistochemistry we observed that acute stress exposure resulted in a different pattern of neuronal activation in the amygdala and the hippocampus of PPARγNestinCre KO mice compared with Wt mice. No differences were found between Wt and KO mice in hypothalamic regions responsible for hormonal response to stress, nor in blood corticosterone levels. Microinjection of pioglitazone, into the amygdala but not into the hippocampus abolished the anxiogenic response elicited by acute stress. Results also showed that in both regions PPARγ co-localizes with GABAergic cells. These findings demonstrate that neuronal PPARγ is involved the regulation of the stress response, and that the amygdala is a key substrate for the anxiolytic effect of PPARγ.
SIGNIFICANCE STATEMENT:
PPARγ is a classical target for antidiabetic therapies with thiazolidinedione compounds. PPARγ agonists, such as rosiglitazone and pioglitazone, are in clinical use for the treatment of insulin resistance. PPARγ has recently attracted attention for its involvement in the regulation of CNS immune response and functions. Here, we demonstrate that neuronal PPARγ activation prevented the negative emotional effects of stress and exerted anxiolytic actions without influencing HPA axis function. Conversely, pharmacological blockade or genetic deletion of PPARγ enhanced anxiogenic responses and increased vulnerability to stress. These effects appear to be controlled by PPARγ neuronal-mediated mechanisms in the amygdala.
Ledwon JK, Turin SY, Gosain AK, Topczewska JM.
PMID: 29630949 | DOI: 10.1016/j.gep.2018.04.002
Fibroblast growth factor (FGF) signaling is essential for many developmental processes and plays a pivotal role in skeletal homeostasis, regeneration and wound healing. FGF signals through one of five tyrosine kinase receptors: Fgfr1a, -1b, -2, -3, -4. To characterize the expression of zebrafish fgfr3 from the larval stage to adulthood, we used RNAscope in situ hybridization on paraffin sections of the zebrafish head. Our study revealed spatial and temporal distribution of fgfr3 transcript in chondrocytes of the head cartilages, osteoblasts involved in bone formation, ventricular zone of the brain, undifferentiated mesenchymal cells of the skin, and lens epithelium of the eye. In general, the expression pattern of zebrafish fgfr3 is similar to the expression observed in higher vertebrates.
Calafate, S;Özturan, G;Thrupp, N;Vanderlinden, J;Santa-Marinha, L;Morais-Ribeiro, R;Ruggiero, A;Bozic, I;Rusterholz, T;Lorente-Echeverría, B;Dias, M;Chen, WT;Fiers, M;Lu, A;Vlaeminck, I;Creemers, E;Craessaerts, K;Vandenbempt, J;van Boekholdt, L;Poovathingal, S;Davie, K;Thal, DR;Wierda, K;Oliveira, TG;Slutsky, I;Adamantidis, A;De Strooper, B;de Wit, J;
PMID: 37188873 | DOI: 10.1038/s41593-023-01325-4
Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.
Aguilar, K;Comes, G;Canal, C;Quintana, A;Sanz, E;Hidalgo, J;
PMID: 35770802 | DOI: 10.1002/glia.24234
Leigh syndrome is a mitochondrial disease characterized by neurodegeneration, neuroinflammation, and early death. Mice lacking NDUFS4, a mitochondrial complex I subunit (Ndufs4 KO mice), have been established as a good animal model for studying human pathology associated with Leigh syndrome. As the disease progresses, there is an increase in neurodegeneration and neuroinflammation, thereby leading to deteriorating neurological symptoms, including motor deficits, breathing alterations, and eventually, death of the animal. However, despite the magnitude of neuroinflammation associated with brain lesions, the role of neuroinflammatory pathways and their main cellular components have not been addressed directly as relevant players in the disease pathology. Here, we investigate the role of microglial cells, the main immune cells of the CNS, in Leigh-like syndrome pathology, by pharmacologically depleting them using the colony-stimulating factor 1 receptor antagonist PLX3397. Microglial depletion extended lifespan and delayed motor symptoms in Ndufs4 KO mice, likely by preventing neuronal loss. Next, we investigated the role of the major cytokine interleukin-6 (IL-6) in the disease progression. IL-6 deficiency partially rescued breathing abnormalities and modulated gliosis but did not extend the lifespan or rescue motor decline in Ndufs4 KO mice. The present results show that microglial accumulation is pathogenic, in a process independent of IL-6, and hints toward a contributing role of neuroinflammation in the disease of Ndufs4 KO mice and potentially in patients with Leigh syndrome.