ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Neuron.
2017 Oct 11
Farhy-Tselnicker I, van Casteren ACM, Lee A, Chang VT, Aricescu AR, Allen NJ.
PMID: 29024665 | DOI: 10.1016/j.neuron.2017.09.053
The generation of precise synaptic connections between developing neurons is critical to the formation of functional neural circuits. Astrocyte-secreted glypican 4 induces formation of active excitatory synapses by recruiting AMPA glutamate receptors to the postsynaptic cell surface. We now identify the molecular mechanism of how glypican 4 exerts its effect. Glypican 4 induces release of the AMPA receptor clustering factor neuronal pentraxin 1 from presynaptic terminals by signaling through presynaptic protein tyrosine phosphatase receptor δ. Pentraxin then accumulates AMPA receptors on the postsynaptic terminal forming functional synapses. Our findings reveal a signaling pathway that regulates synaptic activity during central nervous system development and demonstrates a role for astrocytes as organizers of active synaptic connections by coordinating both pre and post synaptic neurons. As mutations in glypicans are associated with neurological disorders, such as autism and schizophrenia, this signaling cascade offers new avenues to modulate synaptic function in disease.
Cell Rep.
2018 Jan 02
Boisvert MM, Erikson GA, Shokhirev MN, Allen NJ.
PMID: 29298427 | DOI: 10.1016/j.celrep.2017.12.039
Aging brains undergo cognitive decline, associated with decreased neuronal synapse number and function and altered metabolism. Astrocytes regulate neuronal synapse formation and function in development and adulthood, but whether these properties change during aging, contributing to neuronal dysfunction, is unknown. We addressed this by generating aged and adult astrocyte transcriptomes from multiple mouse brain regions. These data provide a comprehensive RNA-seq database of adult and aged astrocyte gene expression, available online as a resource. We identify astrocyte genes altered by aging across brain regions and regionally unique aging changes. Aging astrocytes show minimal alteration of homeostatic and neurotransmission-regulating genes. However, aging astrocytes upregulate genes that eliminate synapses and partially resemble reactive astrocytes. We further identified heterogeneous expression of synapse-regulating genes between astrocytes from different cortical regions. We find that alterations to astrocytes in aging create an environment permissive to synapse elimination and neuronal damage, potentially contributing to aging-associated cognitive decline.
Neuron. 2018 Sep 21.
2018 Oct 02
Condomitti G, Wierda KD, Schroeder A, Rubio SE, Vennekens KM, Orlandi C, Martemyanov KA, Gounko NV, Savas JN, de Wit J.
PMID: 30290982 | DOI: 10.1016/j.neuron.2018.08.038
Pyramidal neuron dendrites integrate synaptic input from multiple partners. Different inputs converging on the same dendrite have distinct structural and functional features, but the molecular mechanisms organizing input-specific properties are poorly understood. We identify the orphan receptor GPR158 as a binding partner for the heparan sulfate proteoglycan (HSPG) glypican 4 (GPC4). GPC4 is enriched on hippocampal granule cell axons (mossy fibers), whereas postsynaptic GPR158 is restricted to the proximal segment of CA3 apical dendrites receiving mossy fiber input. GPR158-induced presynaptic differentiation in contacting axons requires cell-surface GPC4 and the co-receptor LAR. Loss of GPR158 increases mossy fiber synapse density but disrupts bouton morphology, impairs ultrastructural organization of active zone and postsynaptic density, and reduces synaptic strength of this connection, while adjacent inputs on the same dendrite are unaffected. Our work identifies an input-specific HSPG-GPR158 interaction that selectively organizes synaptic architecture and function of developing mossy fiber-CA3 synapses in the hippocampus.
Dev Cell. 2018 Dec 19.
2018 Dec 19
Gupta K, Levinsohn J, Linderman G, Chen D, Sun TY, Dong D, Taketo MM, Bosenberg M, Kluger Y, Choate K, Myung P.
PMID: 30595533 | DOI: 10.1016/j.devcel.2018.11.032
Nature biomedical engineering
2023 Jan 12
You, Y;Tian, Y;Yang, Z;Shi, J;Kwak, KJ;Tong, Y;Estania, AP;Cao, J;Hsu, WH;Liu, Y;Chiang, CL;Schrank, BR;Huntoon, K;Lee, D;Li, Z;Zhao, Y;Zhang, H;Gallup, TD;Ha, J;Dong, S;Li, X;Wang, Y;Lu, WJ;Bahrani, E;Lee, LJ;Teng, L;Jiang, W;Lan, F;Kim, BYS;Lee, AS;
PMID: 36635419 | DOI: 10.1038/s41551-022-00989-w
Bone
2017 Dec 05
Foster BL, Ao M, Salmon CR, Chavez MB, Kolli TN, Tran AB, Chu EY, Kantovitz KR, Yadav M, Narisawa S, Millán JL, Nociti Jr FH, Somerman MJ.
PMID: - | DOI: 10.1016/j.bone.2017.12.004
The periodontal complex is essential for tooth attachment and function and includes the mineralized tissues, cementum and alveolar bone, separated by the unmineralized periodontal ligament (PDL). To gain insights into factors regulating cementum-PDL and bone-PDL borders and protecting against ectopic calcification within the PDL, we employed a proteomic approach to analyze PDL tissue from progressive ankylosis knock-out (Ank−/−) mice, featuring reduced PPi, rapid cementogenesis, and excessive acellular cementum. Using this approach, we identified the matrix protein osteopontin (Spp1/OPN) as an elevated factor of interest in Ank−/− mouse molar PDL. We studied the role of OPN in dental and periodontal development and function. During tooth development in wild-type (WT) mice, Spp1 mRNA was transiently expressed by cementoblasts and strongly by alveolar bone osteoblasts. Developmental analysis from 14 to 240 days postnatal (dpn) indicated normal histological structures in Spp1−/− comparable to WT control mice. Microcomputed tomography (micro-CT) analysis at 30 and 90 dpn revealed significantly increased volumes and tissue mineral densities of Spp1−/− mouse dentin and alveolar bone, while pulp and PDL volumes were decreased and tissue densities were increased. However, acellular cementum growth was unaltered in Spp1−/− mice. Quantitative PCR of periodontal-derived mRNA failed to identify potential local compensators influencing cementum in Spp1−/− vs. WT mice at 26 dpn. We genetically deleted Spp1 on the Ank−/− mouse background to determine whether increased Spp1/OPN was regulating periodontal tissues when the PDL space is challenged by hypercementosis in Ank−/− mice. Ank−/−; Spp1−/−double deficient mice did not exhibit greater hypercementosis than that in Ank−/− mice. Based on these data, we conclude that OPN has a non-redundant role regulating formation and mineralization of dentin and bone, influences tissue properties of PDL and pulp, but does not control acellular cementum apposition. These findings may inform therapies targeted at controlling soft tissue calcification.
SSRN Electronic Journal
2022 Oct 13
Christiansen, P;Andreasen, C;Laursen, K;Delaisse, J;Andersen, T;
| DOI: 10.2139/ssrn.4224428
Cell stem cell
2023 Mar 14
You, Z;Wang, L;He, H;Wu, Z;Zhang, X;Xue, S;Xu, P;Hong, Y;Xiong, M;Wei, W;Chen, Y;
PMID: 36933556 | DOI: 10.1016/j.stem.2023.02.007
Cell
2021 Aug 24
Pelka, K;Hofree, M;Chen, JH;Sarkizova, S;Pirl, JD;Jorgji, V;Bejnood, A;Dionne, D;Ge, WH;Xu, KH;Chao, SX;Zollinger, DR;Lieb, DJ;Reeves, JW;Fuhrman, CA;Hoang, ML;Delorey, T;Nguyen, LT;Waldman, J;Klapholz, M;Wakiro, I;Cohen, O;Albers, J;Smillie, CS;Cuoco, MS;Wu, J;Su, MJ;Yeung, J;Vijaykumar, B;Magnuson, AM;Asinovski, N;Moll, T;Goder-Reiser, MN;Applebaum, AS;Brais, LK;DelloStritto, LK;Denning, SL;Phillips, ST;Hill, EK;Meehan, JK;Frederick, DT;Sharova, T;Kanodia, A;Todres, EZ;Jané-Valbuena, J;Biton, M;Izar, B;Lambden, CD;Clancy, TE;Bleday, R;Melnitchouk, N;Irani, J;Kunitake, H;Berger, DL;Srivastava, A;Hornick, JL;Ogino, S;Rotem, A;Vigneau, S;Johnson, BE;Corcoran, RB;Sharpe, AH;Kuchroo, VK;Ng, K;Giannakis, M;Nieman, LT;Boland, GM;Aguirre, AJ;Anderson, AC;Rozenblatt-Rosen, O;Regev, A;Hacohen, N;
PMID: 34450029 | DOI: 10.1016/j.cell.2021.08.003
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com