The Orexigenic Force of Olfactory Palatable Food Cues in Rats
Peris-Sampedro, F;Stoltenborg, I;Le May, MV;Sole-Navais, P;Adan, RAH;Dickson, SL;
PMID: 34578979 | DOI: 10.3390/nu13093101
Environmental cues recalling palatable foods motivate eating beyond metabolic need, yet the timing of this response and whether it can develop towards a less palatable but readily available food remain elusive. Increasing evidence indicates that external stimuli in the olfactory modality communicate with the major hub in the feeding neurocircuitry, namely the hypothalamic arcuate nucleus (Arc), but the neural substrates involved have been only partially uncovered. By means of a home-cage hidden palatable food paradigm, aiming to mimic ubiquitous exposure to olfactory food cues in Western societies, we investigated whether the latter could drive the overeating of plain chow in non-food-deprived male rats and explored the neural mechanisms involved, including the possible engagement of the orexigenic ghrelin system. The olfactory detection of a familiar, palatable food impacted upon meal patterns, by increasing meal frequency, to cause the persistent overconsumption of chow. In line with the orexigenic response observed, sensing the palatable food in the environment stimulated food-seeking and risk-taking behavior, which are intrinsic components of food acquisition, and caused active ghrelin release. Our results suggest that olfactory food cues recruited intermingled populations of cells embedded within the feeding circuitry within the Arc, including, notably, those containing the ghrelin receptor. These data demonstrate the leverage of ubiquitous food cues, not only for palatable food searching, but also to powerfully drive food consumption in ways that resonate with heightened hunger, for which the orexigenic ghrelin system is implicated.
Morris, C;Watkins, D;Shah, N;Pennington, T;Hens, B;Qi, G;Doud, E;Mosley, A;Atwood, B;Baucum, A;
| DOI: 10.1016/j.biopsych.2022.12.008
Background Grooming dysfunction is a hallmark of the obsessive-compulsive spectrum disorder, trichotillomania. Numerous preclinical studies have utilized SAPAP3 deficient mice for understanding the neurobiology of repetitive grooming, suggesting excessive grooming is caused by increased metabotropic glutamate receptor 5 (mGluR5) activity in striatal direct- and indirect pathway medium spiny neurons (dMSNs and iMSNs, respectively). However, MSN subtype-specific signaling mechanisms that mediate mGluR5-dependent adaptations underlying excessive grooming are not fully understood. Here, we investigate the MSN subtype-specific roles of the striatal signaling hub protein, spinophilin, in mediating repetitive motor dysfunction associated with mGluR5 function. Methods Quantitative proteomics and immunoblotting were utilized to identify how spinophilin impacts mGluR5 phosphorylation and protein interaction changes. Plasticity and repetitive motor dysfunction associated with mGluR5 action was measured using our novel conditional spinophilin mouse model that had spinophilin knocked out from striatal dMSNs or/and iMSNs. Results Loss of spinophilin only in iMSNs decreased performance of a novel motor repertoire, but loss of spinophilin in either MSN subtype abrogated striatal plasticity associated with mGluR5 function and prevented excessive grooming caused by SAPAP3 knockout mice or treatment with the mGluR5-specific positive allosteric modulator (VU0360172) without impacting locomotion-relevant behavior. Biochemically, we determined the spinophilin-mGluR5 interaction correlates with grooming behavior and loss of spinophilin shifts mGluR5 interactions from lipid-raft associated proteins toward postsynaptic density (PSD) proteins implicated in psychiatric disorders. Conclusions These results identify spinophilin as a novel striatal signaling hub molecule in MSNs that cell subtype-specifically mediates behavioral, functional, and molecular adaptations associated with repetitive motor dysfunction in psychiatric disorders.
Golden SA, Jin M, Heins C, Venniro M, Michaelides M, Shaham Y.
PMID: PMID: 30655356 | DOI: DOI:10.1523/JNEUROSCI.2409-18.2019
We recently developed a mouse model of appetitive operant aggression and reported that adult male outbred CD-1 mice lever-press for the opportunity to attack subordinate male mice and relapse to aggression seeking during abstinence. Here we studied the role of nucleus accumbens (NAc) dopamine D1- and D2-receptor (Drd1 and Drd2) expressing neurons in aggression self-administration and aggression seeking. We trained CD-1 mice to self-administer intruders (9 d, 12 trials/d) and tested them for aggression self-administration and aggression seeking on abstinence day 1. We used immunohistochemistry and in situ hybridization to measure the neuronal activity marker Fos in the NAc, and cell-type specific colocalization of Fos with Drd1- and Drd2-expressing neurons. To test the causal role of Drd1- and Drd2-expressing neurons, we validated a transgenic hybrid breeding strategy crossing inbred Drd1-Cre and Drd2-Cre transgenic mice with outbred CD-1 mice and used cell-type specific Cre-DREADD (hM4Di) to inhibit NAc Drd1- and Drd2-expressing neuron activity. We found that that aggression self-administration and aggression seeking induced higher Fos expression in NAc shell than in core, that Fos colocalized with Drd1 and Drd2 in both subregions, and that chemogenetic inhibition of Drd1-, but not Drd2-, expressing neurons decreased aggression self-administration and aggression seeking. Results indicate a cell-type specific role of Drd1-expressing neurons that is critical for both aggression self-administration and aggression seeking. Our study also validates a simple breeding strategy between outbred CD-1 mice and inbred C57-based Cre lines that can be used to study cell-type and circuit mechanisms of aggression reward and relapse.SIGNIFICANCE STATEMENTAggression is often comorbid with neuropsychiatric diseases, including drug addiction. One form, appetitive aggression, exhibits symptomatology that mimics that of drug addiction and is hypothesized to be due to dysregulation of addiction-related reward circuits. However, our mechanistic understanding of the circuitry modulating appetitive operant aggression is limited. Here we use a novel mouse model of aggression self-administration and relapse, in combination with immunohistochemistry, in situ hybridization, and chemogenetic manipulations to examine how cell-types in the nucleus accumbens are recruited for, and control, operant aggression self-administration and aggression seeking on abstinence day 1. We found that one population, dopamine receptor 1-expressing neurons, act as a critical modulator of operant aggression reward and aggression seeking.
Cai, X;Liu, H;Feng, B;Yu, M;He, Y;Liu, H;Liang, C;Yang, Y;Tu, L;Zhang, N;Wang, L;Yin, N;Han, J;Yan, Z;Wang, C;Xu, P;Wu, Q;Tong, Q;He, Y;Xu, Y;
PMID: 35501380 | DOI: 10.1038/s41593-022-01062-0
Midbrain dopamine (DA) and serotonin (5-HT) neurons regulate motivated behaviors, including feeding, but less is known about how these circuits may interact. In this study, we found that DA neurons in the mouse ventral tegmental area bidirectionally regulate the activity of 5-HT neurons in the dorsal raphe nucleus (DRN), with weaker stimulation causing DRD2-dependent inhibition and overeating, while stronger stimulation causing DRD1-dependent activation and anorexia. Furthermore, in the activity-based anorexia (ABA) paradigm, which is a mouse model mimicking some clinical features of human anorexia nervosa (AN), we observed a DRD2 to DRD1 shift of DA neurotransmission on 5-HTDRN neurons, which causes constant activation of these neurons and contributes to AN-like behaviors. Finally, we found that systemic administration of a DRD1 antagonist can prevent anorexia and weight loss in ABA. Our results revealed regulation of feeding behavior by stimulation strength-dependent interactions between DA and 5-HT neurons, which may contribute to the pathophysiology of AN.
Pirapaharan DC, Olesen JB, Andersen TL, Christensen SB, Kjærsgaard-Andersen P, Delaisse JM, Søe K.
PMID: 30975918 | DOI: 10.1242/jcs.229351
Osteoblast-lineage cells in bone human were recently shown to colonize eroded bone surfaces and to closely interact with osteoclasts. They proved identical with reversal cells and are believed to differentiate into bone forming osteoblasts thereby coupling resorption and formation. However, they also exert catabolic activity that contributes to osteoclastic bone resorption, but this has not received much attention. Herein, we used co-cultures of primary human osteoblast-lineage cells and human osteoclasts derived from peripheral blood monocytes to investigate whether a catabolic activity of osteoblast-lineage cells may impact on osteoclastic bone resorption. Through a combination of immunofluorescence, in-situ hybridization, and time-lapse we show that MMP-13 expressing osteoblast-lineage cells are attracted to and closely interact with bone resorbing osteoclasts. This close interaction results in a strong and significant increase in the bone resorptive activity of osteoclasts - especially those making trenches. Importantly, we show that osteoclastic bone resorption becomes sensitive to inhibition of matrix metalloproteinases in the presence, but not in the absence, of osteoblast-lineage cells. We propose that this may be due to the direct action of osteoblast-lineage-derived MMP-13 on bone resorption.
Park S, Aintablian A, Coupe B, Bouret SG
PMID: 32313051 | DOI: 10.1038/s41467-020-15624-y
Obesity is associated with the activation of cellular responses, such as endoplasmic reticulum (ER) stress. Here, we show that leptin-deficient ob/ob mice display elevated hypothalamic ER stress as early as postnatal day 10, i.e., prior to the development of obesity in this mouse model. Neonatal treatment of ob/ob mice with the ER stress-relieving drug tauroursodeoxycholic acid (TUDCA) causes long-term amelioration of body weight, food intake, glucose homeostasis, and pro-opiomelanocortin (POMC) projections. Cells exposed to ER stress often activate autophagy. Accordingly, we report that in vitro induction of ER stress and neonatal leptin deficiency in vivo activate hypothalamic autophagy-related genes. Furthermore, genetic deletion of autophagy in pro-opiomelanocortin neurons of ob/ob mice worsens their glucose homeostasis, adiposity, hyperphagia, and POMC neuronal projections, all of which are ameliorated with neonatal TUDCA treatment. Together, our data highlight the importance of early life ER stress-autophagy pathway in influencing hypothalamic circuits and metabolic regulation
Sieber, P;Schäfer, A;Lieberherr, R;Caimi, SL;Lüthi, U;Ryge, J;Bergmann, JH;Le Goff, F;Stritt, M;Blattmann, P;Renault, B;Rammelt, P;Sempere, B;Freti, D;Studer, R;White, ES;Birker-Robaczewska, M;Boucher, M;Nayler, O;
PMID: 36520540 | DOI: 10.1172/jci.insight.154719
In the progression phase of idiopathic pulmonary fibrosis (IPF) the normal alveolar structure of the lung is lost and replaced by remodeled fibrotic tissue and by bronchiolized cystic airspaces. Although these are characteristic features of IPF, knowledge of specific interactions between these pathological processes is limited. Here, the interaction of lung epithelial and lung mesenchymal cells was investigated in a co-culture model of human primary airway epithelial cells (EC) and lung fibroblasts (FB). Single-cell RNA sequencing (sc-RNA-seq) revealed that the starting EC population was heterogenous and enriched for cells with a basal cell signature. Furthermore, fractions of the initial EC and FB cell populations adopted distinct pro-fibrotic cell differentiation states upon co-cultivation, resembling specific cell populations that were previously identified in lungs of IPF patients. Transcriptomic analysis revealed active nuclear factor NF-kappa-B (NF-κB) signaling early in the co-cultured EC and FB cells and the identified NF-κB expression signatures were also found in "HAS1 High FB" and "PLIN2+ FB" populations from IPF patient lungs. Pharmacological blockade of NF-κB signaling attenuated specific phenotypic changes of EC and prevented FB-mediated interleukin-6 (IL6), interleukin-8 (IL-8) and C-X-C motif chemokine ligand 6 (CXCL6) cytokine secretion, as well as collagen alpha-1(I) chain (COL1A1) and alpha-smooth muscle actin (α-SMA) accumulation. Thus, we identified NF-κB as a potential mediator, linking epithelial pathobiology with fibrogenesis.
Chen, W;Mehlkop, O;Scharn, A;Nolte, H;Klemm, P;Henschke, S;Steuernagel, L;Sotelo-Hitschfeld, T;Kaya, E;Wunderlich, CM;Langer, T;Kononenko, NL;Giavalisco, P;Brüning, JC;
PMID: 37075752 | DOI: 10.1016/j.cmet.2023.03.019
Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.
Thrombosis and haemostasis
Ye, M;Ni, Q;Wang, H;Wang, Y;Yao, Y;Li, Y;Wang, W;Yang, S;Chen, J;Lv, L;Zhao, Y;Xue, G;Guo, X;Zhang, L;
PMID: 36462769 | DOI: 10.1055/s-0042-1757875
Phenotypic switch of vascular smooth muscle cells (VSMCs) plays an important role in the pathogenesis of atherosclerosis. The mRNA expression of the synthetic biomarker Collagen Type I Alpha 1 Chain (COL1A1) gene is upregulated during the switch of VSMCs from the contractile to the synthetic phenotype. The association of noncoding circular RNAs transcribed by the COL1A1 gene with VSMC phenotype alteration and atherogenesis remains unclear. Here we reported a COL1A1 circular RNA (circCOL1A1) which is specifically expressed in VSMCs and is upregulated during phenotype alteration of VSMCs. CircCOL1A1 is also detectable in the serum or plasma. Healthy vascular tissues have a low expression of CircCOL1A1, while it is upregulated in atherosclerosis patients. Through ex vivo and in vitro assays, we found that circCOL1A1 can promote VSMC phenotype switch. Mechanistic analysis showed that circCOL1A1 may exert its function as a competing endogenous RNA of miR-30a-5p. Upregulation of circCOL1A1 ameliorates the inhibitory effect of miR-30a-5p on its target SMAD1, which leads to suppression of transforming growth factor-β (TGF-β) signaling. Our findings demonstrate that circCOL1A1 promotes the phenotype switch of VSMCs through the miR-30a-5p/SMAD1/TGF-β axis and it may serve as a novel marker of atherogenesis or as a therapeutic target for atherosclerosis.Thieme. All rights reserved.
Minatoguchi, S;Saito, S;Furuhashi, K;Sawa, Y;Okazaki, M;Shimamura, Y;Kaihan, AB;Hashimoto, Y;Yasuda, Y;Hara, A;Mizutani, Y;Ando, R;Kato, N;Ishimoto, T;Tsuboi, N;Esaki, N;Matsuyama, M;Shiraki, Y;Kobayashi, H;Asai, N;Enomoto, A;Maruyama, S;
PMID: 35354870 | DOI: 10.1038/s41598-022-09331-5
Perivascular mesenchymal cells (PMCs), which include pericytes, give rise to myofibroblasts that contribute to chronic kidney disease progression. Several PMC markers have been identified; however, PMC heterogeneity and functions are not fully understood. Here, we describe a novel subset of renal PMCs that express Meflin, a glycosylphosphatidylinositol-anchored protein that was recently identified as a marker of fibroblasts essential for cardiac tissue repair. Tracing the lineage of Meflin+ PMCs, which are found in perivascular and periglomerular areas and exhibit renin-producing potential, showed that they detach from the vasculature and proliferate under disease conditions. Although the contribution of Meflin+ PMCs to conventional α-SMA+ myofibroblasts is low, they give rise to fibroblasts with heterogeneous α-SMA expression patterns. Genetic ablation of Meflin+ PMCs in a renal fibrosis mouse model revealed their essential role in collagen production. Consistent with this, human biopsy samples showed that progressive renal diseases exhibit high Meflin expression. Furthermore, Meflin overexpression in kidney fibroblasts promoted bone morphogenetic protein 7 signals and suppressed myofibroblastic differentiation, implicating the roles of Meflin in suppressing tissue fibrosis. These findings demonstrate that Meflin marks a PMC subset that is functionally distinct from classic pericytes and myofibroblasts, highlighting the importance of elucidating PMC heterogeneity.
Mishra, I;Xie, WR;Bournat, JC;He, Y;Wang, C;Silva, ES;Liu, H;Ku, Z;Chen, Y;Erokwu, BO;Jia, P;Zhao, Z;An, Z;Flask, CA;He, Y;Xu, Y;Chopra, AR;
PMID: 35298903 | DOI: 10.1016/j.cmet.2022.02.012
Asprosin is a fasting-induced glucogenic and centrally acting orexigenic hormone. The olfactory receptor Olfr734 is known to be the hepatic receptor for asprosin that mediates its effects on glucose production, but the receptor for asprosin's orexigenic function has been unclear. Here, we have identified protein tyrosine phosphatase receptor δ (Ptprd) as the orexigenic receptor for asprosin. Asprosin functions as a high-affinity Ptprd ligand in hypothalamic AgRP neurons, regulating the activity of this circuit in a cell-autonomous manner. Genetic ablation of Ptprd results in a strong loss of appetite, leanness, and an inability to respond to the orexigenic effects of asprosin. Ablation of Ptprd specifically in AgRP neurons causes resistance to diet-induced obesity. Introduction of the soluble Ptprd ligand-binding domain in the circulation of mice suppresses appetite and blood glucose levels by sequestering plasma asprosin. Identification of Ptprd as the orexigenic asprosin receptor creates a new avenue for the development of anti-obesity therapeutics.
Claypool, SM;Behdin, S;Applebey, SV;Orihuel, J;Ma, Z;Reiner, DJ;
PMID: 35768212 | DOI: 10.1523/ENEURO.0496-21.2022
The orbitofrontal cortex (OFC) and piriform cortex (Pir) play a role in fentanyl relapse after food choice-induced voluntary abstinence, a procedure mimicking abstinence because of availability of alternative nondrug rewards. We used in situ hybridization and pharmacology to determine the role of OFC and Pir cannabinoid and dopamine receptors in fentanyl relapse. We trained male and female rats to self-administer food pellets for 6 d (6 h/d) and intravenous fentanyl (2.5 µg/kg/infusion) for 12 d (6 h/d). We assessed fentanyl relapse after 12 discrete choice sessions between fentanyl and food (20 trials/d), in which rats voluntarily reduced fentanyl self-administration. We used RNAscope to determine whether fentanyl relapse is associated with activity (indicated by Fos) in OFC and Pir cells expressing Cnr1 [which encodes cannabinoid 1 (CB1) receptors] or Drd1 and Drd2 (which encode dopamine D1 and D2 receptors). We injected a CB1 receptor antagonist or agonist (0.3 or 1.0 µg AM251 or WIN55,212-2/hemisphere) into OFC or a dopamine D1 receptor antagonist (1.0 or 3.0 µg SCH39166/hemisphere) into Pir to determine the effect on fentanyl relapse. Fentanyl relapse was associated with OFC cells co-expressing Fos and Cnr1 and Pir cells co-expressing Fos and Drd1 However, injections of the CB1 receptor antagonist AM251 or agonist WIN55,212-2 into OFC or the dopamine D1 receptor antagonist SCH39166 into Pir had no effect on fentanyl relapse. Fentanyl relapse is associated with activation of Cnr1-expressing OFC cells and Drd1-expressing Pir cells, but pharmacological manipulations do not support causal roles of OFC CB1 receptors or Pir dopamine D1 receptors in fentanyl relapse.