Jansen, J;Reimer, K;Nagai, J;Varghese, F;Overheul, G;de Beer, M;Roverts, R;Daviran, D;Fermin, L;Willemsen, B;Beukenboom, M;Djudjaj, S;von Stillfried, S;van Eijk, L;Mastik, M;Bulthuis, M;Dunnen, W;van Goor, H;Hillebrands, J;Triana, S;Alexandrov, T;Timm, M;Tideman van den Berge, B;van den Broek, M;Nlandu, Q;Heijnert, J;Bindels, E;Hoogenboezem, R;Mooren, F;Kuppe, C;Miesen, P;Grünberg, K;Ijzermans, T;Steenbergen, E;Czogalla, J;Schreuder, M;Sommerdijk, N;Akiva, A;Boor, P;Puelles, V;Floege, J;Huber, T;van Rij, R;Costa, I;Schneider, R;Smeets, B;Kramann, R;
| DOI: 10.1016/j.stem.2021.12.010
Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human induced pluripotent stem cell-derived kidney organoids with SARS-CoV-2. Single cell RNA-sequencing indicated injury and dedifferentiation of infected cells with activation of pro-fibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in Long-COVID.
Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19
Li, Z;Wang, Z;Dinh, PC;Zhu, D;Popowski, KD;Lutz, H;Hu, S;Lewis, MG;Cook, A;Andersen, H;Greenhouse, J;Pessaint, L;Lobo, LJ;Cheng, K;
PMID: 34140674 | DOI: 10.1038/s41565-021-00923-2
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has grown into a global pandemic, and only a few antiviral treatments have been approved to date. Angiotensin-converting enzyme 2 (ACE2) plays a fundamental role in SARS-CoV-2 pathogenesis because it allows viral entry into host cells. Here we show that ACE2 nanodecoys derived from human lung spheroid cells (LSCs) can bind and neutralize SARS-CoV-2 and protect the host lung cells from infection. In mice, these LSC-nanodecoys were delivered via inhalation therapy and resided in the lungs for over 72 h post-delivery. Furthermore, inhalation of the LSC-nanodecoys accelerated clearance of SARS-CoV-2 mimics from the lungs, with no observed toxicity. In cynomolgus macaques challenged with live SARS-CoV-2, four doses of these nanodecoys delivered by inhalation promoted viral clearance and reduced lung injury. Our results suggest that LSC-nanodecoys can serve as a potential therapeutic agent for treating COVID-19.
One or two dose regimen of the SARS-CoV-2 synthetic DNA vaccine INO-4800 protects against respiratory tract disease burden in nonhuman primate challenge model
Gooch, K;Smith, T;Salguero, F;Fotheringham, S;Watson, R;Dennis, M;Handley, A;Humphries, H;Longet, S;Tipton, T;Sarfas, C;Sibley, L;Slack, G;Rayner, E;Ryan, K;Schultheis, K;Ramos, S;White, A;Charlton, S;Sharpe, S;Gleeson, F;Humeau, L;Hall, Y;Broderick, K;Carroll, M;
| DOI: 10.1016/j.vaccine.2021.06.057
Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induced both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 x 106 pfu) via the intranasal and intratracheal routes we observed significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 was associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provided no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.
Gibson EM, Nagaraja S, Ocampo A, Tam LT, Wood LS, Pallegar PN, Greene JJ, Geraghty AC, Goldstein AK, Ni L, Woo PJ, Barres BA, Liddelow S, Vogel H, Monje M.
| DOI: 10.1016/j.cell.2018.10.049
Chemotherapy results in a frequent yet poorly understood syndrome of long-term neurological deficits. Neural precursor cell dysfunction and white matter dysfunction are thought to contribute to this debilitating syndrome. Here, we demonstrate persistent depletion of oligodendrocyte lineage cells in humans who received chemotherapy. Developing a mouse model of methotrexate chemotherapy-induced neurological dysfunction, we find a similar depletion of white matter OPCs, increased but incomplete OPC differentiation, and a persistent deficit in myelination. OPCs from chemotherapy-naive mice similarly exhibit increased differentiation when transplanted into the microenvironment of previously methotrexate-exposed brains, indicating an underlying microenvironmental perturbation. Methotrexate results in persistent activation of microglia and subsequent astrocyte activation that is dependent on inflammatory microglia. Microglial depletion normalizes oligodendroglial lineage dynamics, myelin microstructure, and cognitive behavior after methotrexate chemotherapy. These findings indicate that methotrexate chemotherapy exposure is associated with persistent tri-glial dysregulation and identify inflammatory microglia as a therapeutic target to abrogate chemotherapy-related cognitive impairment.
Wendisch, D;Dietrich, O;Mari, T;von Stillfried, S;Ibarra, I;Mittermaier, M;Mache, C;Chua, R;Knoll, R;Timm, S;Brumhard, S;Krammer, T;Zauber, H;Hiller, A;Pascual-Reguant, A;Mothes, R;Bülow, R;Schulze, J;Leipold, A;Djudjaj, S;Erhard, F;Geffers, R;Pott, F;Kazmierski, J;Radke, J;Pergantis, P;Baßler, K;Conrad, C;Aschenbrenner, A;Sawitzki, B;Landthaler, M;Wyler, E;Horst, D;Hippenstiel, S;Hocke, A;Heppner, F;Uhrig, A;Garcia, C;Machleidt, F;Herold, S;Elezkurtaj, S;Thibeault, C;Witzenrath, M;Cochain, C;Suttorp, N;Drosten, C;Goffinet, C;Kurth, F;Schultze, J;Radbruch, H;Ochs, M;Eils, R;Müller-Redetzky, H;Hauser, A;Luecken, M;Theis, F;Conrad, C;Wolff, T;Boor, P;Selbach, M;Saliba, A;Sander, L;
| DOI: 10.1016/j.cell.2021.11.033
COVID-19-induced ‘acute respiratory distress syndrome’ (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyzed pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single cell genomics, immunohistology and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not Influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.
Peripheral and lung resident memory T cell responses against SARS-CoV-2
Grau-Expósito, J;Sánchez-Gaona, N;Massana, N;Suppi, M;Astorga-Gamaza, A;Perea, D;Rosado, J;Falcó, A;Kirkegaard, C;Torrella, A;Planas, B;Navarro, J;Suanzes, P;Álvarez-Sierra, D;Ayora, A;Sansano, I;Esperalba, J;Andrés, C;Antón, A;Ramón Y Cajal, S;Almirante, B;Pujol-Borrell, R;Falcó, V;Burgos, J;Buzón, MJ;Genescà, M;
PMID: 34021148 | DOI: 10.1038/s41467-021-23333-3
Resident memory T cells (TRM) positioned within the respiratory tract are probably required to limit SARS-CoV-2 spread and COVID-19. Importantly, TRM are mostly non-recirculating, which reduces the window of opportunity to examine these cells in the blood as they move to the lung parenchyma. Here, we identify circulating virus-specific T cell responses during acute infection with functional, migratory and apoptotic patterns modulated by viral proteins and associated with clinical outcome. Disease severity is associated predominantly with IFNγ and IL-4 responses, increased responses against S peptides and apoptosis, whereas non-hospitalized patients have increased IL-12p70 levels, degranulation in response to N peptides and SARS-CoV-2-specific CCR7+ T cells secreting IL-10. In convalescent patients, lung-TRM are frequently detected even 10 months after initial infection, in which contemporaneous blood does not reflect tissue-resident profiles. Our study highlights a balanced anti-inflammatory antiviral response associated with a better outcome and persisting TRM cells as important for future protection against SARS-CoV-2 infection.
Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection
Diao, B;Wang, C;Wang, R;Feng, Z;Zhang, J;Yang, H;Tan, Y;Wang, H;Wang, C;Liu, L;Liu, Y;Liu, Y;Wang, G;Yuan, Z;Hou, X;Ren, L;Wu, Y;Chen, Y;
PMID: 33947851 | DOI: 10.1038/s41467-021-22781-1
It is unclear whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can directly infect human kidney, thus leading to acute kidney injury (AKI). Here, we perform a retrospective analysis of clinical parameters from 85 patients with laboratory-confirmed coronavirus disease 2019 (COVID-19); moreover, kidney histopathology from six additional COVID-19 patients with post-mortem examinations was performed. We find that 27% (23/85) of patients exhibited AKI. The elderly patients and cases with comorbidities (hypertension and heart failure) are more prone to develop AKI. Haematoxylin & eosin staining shows that the kidneys from COVID-19 autopsies have moderate to severe tubular damage. In situ hybridization assays illustrate that viral RNA accumulates in tubules. Immunohistochemistry shows nucleocapsid and spike protein deposits in the tubules, and immunofluorescence double staining shows that both antigens are restricted to the angiotensin converting enzyme-II-positive tubules. SARS-CoV-2 infection triggers the expression of hypoxic damage-associated molecules, including DP2 and prostaglandin D synthase in infected tubules. Moreover, it enhances CD68+ macrophages infiltration into the tubulointerstitium, and complement C5b-9 deposition on tubules is also observed. These results suggest that SARS-CoV-2 directly infects human kidney to mediate tubular pathogenesis and AKI.
Sladitschek-Martens, HL;Guarnieri, A;Brumana, G;Zanconato, F;Battilana, G;Xiccato, RL;Panciera, T;Forcato, M;Bicciato, S;Guzzardo, V;Fassan, M;Ulliana, L;Gandin, A;Tripodo, C;Foiani, M;Brusatin, G;Cordenonsi, M;Piccolo, S;
PMID: 35768505 | DOI: 10.1038/s41586-022-04924-6
Ageing is intimately connected to the induction of cell senescence1,2, but why this is so remains poorly understood. A key challenge is the identification of pathways that normally suppress senescence, are lost during ageing and are functionally relevant to oppose ageing3. Here we connected the structural and functional decline of ageing tissues to attenuated function of the master effectors of cellular mechanosignalling YAP and TAZ. YAP/TAZ activity declines during physiological ageing in stromal cells, and mimicking such decline through genetic inactivation of YAP/TAZ in these cells leads to accelerated ageing. Conversely, sustaining YAP function rejuvenates old cells and opposes the emergence of ageing-related traits associated with either physiological ageing or accelerated ageing triggered by a mechano-defective extracellular matrix. Ageing traits induced by inactivation of YAP/TAZ are preceded by induction of tissue senescence. This occurs because YAP/TAZ mechanotransduction suppresses cGAS-STING signalling, to the extent that inhibition of STING prevents tissue senescence and premature ageing-related tissue degeneration after YAP/TAZ inactivation. Mechanistically, YAP/TAZ-mediated control of cGAS-STING signalling relies on the unexpected role of YAP/TAZ in preserving nuclear envelope integrity, at least in part through direct transcriptional regulation of lamin B1 and ACTR2, the latter of which is involved in building the peri-nuclear actin cap. The findings demonstrate that declining YAP/TAZ mechanotransduction drives ageing by unleashing cGAS-STING signalling, a pillar of innate immunity. Thus, sustaining YAP/TAZ mechanosignalling or inhibiting STING may represent promising approaches for limiting senescence-associated inflammation and improving healthy ageing.
Stenton, S;McPartland, J;Shukla, R;Turner, K;Marton, T;Hargitai, B;Bamber, A;Pryce, J;Peres, CL;Burguess, N;Wagner, B;Ciolka, B;Simmons, W;Hurrell, D;Sekar, T;Moldovan, C;Trayers, C;Bryant, V;Palm, L;Cohen, MC;
PMID: 35465646 | DOI: 10.1016/j.eclinm.2022.101389
Pregnant women with SARS-CoV-2 infection experience higher rates of stillbirth and preterm birth. A unique pattern of chronic histiocytic intervillositis (CHI) and/or massive perivillous fibrin deposition (MPFD) has emerged, coined as SARS-CoV-2 placentitis.The aim of this study was to describe a cohort of placentas diagnosed with SARS-CoV-2 placentitis during October 2020-March 2021. Cases with a histological diagnosis of SARS-CoV-2 placentitis and confirmatory immunohistochemistry were reported. Maternal demographic data, pregnancy outcomes and placental findings were collected.59 mothers delivered 61 infants with SARS-CoV-2 placentitis. The gestational age ranged from 19 to 41 weeks with most cases (78.6%) being third trimester. 30 infants (49.1%) were stillborn or late miscarriages. Obese mothers had higher rates of pregnancy loss when compared with those with a BMI <30 [67% (10/15) versus 41% (14/34)]. 47/59 (79.7%) mothers had a positive SARS-CoV-2 PCR test either at the time of labour or in the months before, of which 12 (25.5%) were reported to be asymptomatic. Ten reported only CHI, two cases showed MPFD only and in 48 placentas both CHI and MPFD was described.SARS-CoV2 placentitis is a distinct entity associated with increased risk of pregnancy loss, particularly in the third trimester. Women can be completely asymptomatic and still experience severe placentitis. Unlike 'classical' MPFD, placentas with SARS-CoV-2 are generally normal in size with adequate fetoplacental weight ratios. Further work should establish the significance of the timing of maternal SARS-CoV-2 infection and placentitis, the significance of SARS-CoV2 variants, and rates of vertical transmission associated with this pattern of placental inflammation.There was not funding associated with this study.
Sun, Q;Lee, W;Hu, H;Ogawa, T;De Leon, S;Katehis, I;Lim, CH;Takeo, M;Cammer, M;Taketo, MM;Gay, DL;Millar, SE;Ito, M;
PMID: 37076619 | DOI: 10.1038/s41586-023-05960-6
For unknow reasons, the melanocyte stem cell (McSC) system fails earlier than other adult stem cell populations1, which leads to hair greying in most humans and mice2,3. Current dogma states that McSCs are reserved in an undifferentiated state in the hair follicle niche, physically segregated from differentiated progeny that migrate away following cues of regenerative stimuli4-8. Here we show that most McSCs toggle between transit-amplifying and stem cell states for both self-renewal and generation of mature progeny, a mechanism fundamentally distinct from those of other self-renewing systems. Live imaging and single-cell RNA sequencing revealed that McSCs are mobile, translocating between hair follicle stem cell and transit-amplifying compartments where they reversibly enter distinct differentiation states governed by local microenvironmental cues (for example, WNT). Long-term lineage tracing demonstrated that the McSC system is maintained by reverted McSCs rather than by reserved stem cells inherently exempt from reversible changes. During ageing, there is accumulation of stranded McSCs that do not contribute to the regeneration of melanocyte progeny. These results identify a new model whereby dedifferentiation is integral to homeostatic stem cell maintenance and suggest that modulating McSC mobility may represent a new approach for the prevention of hair greying.
Liver histopathology in COVID-19 patients: A mono-Institutional series of liver biopsies and autopsy specimens
Pathology, research and practice
Fassan, M;Mescoli, C;Sbaraglia, M;Guzzardo, V;Russo, FP;Fabris, R;Trevenzoli, M;Pelizzaro, F;Cattelan, AM;Basso, C;Navalesi, P;Farinati, F;Vettor, R;Dei Tos, AP;
PMID: 33932720 | DOI: 10.1016/j.prp.2021.153451
Few studies have focused on COVID-19 patients' hepatic histopathological features. Many of the described morphological landscapes are non-specific and possibly due to other comorbidities or to Sars-CoV-2-related therapies. We describe the hepatic histopathological findings of 3 liver biopsies obtained from living COVID-19 patients in which active SARS-CoV-2 infection was molecularly confirmed and biopsied because of significant alterations of liver function tests and 25 livers analyzed during COVID-19-related autopsies. Main histopathological findings were (i) the absence of significant biliary tree or vascular damages, (ii) mild/absent lymphocytic hepatitis; (iii) activation of (pigmented) Kupffer cells, (iv) hepatocellular regenerative changes, (v) the presence of steatosis, (vi) sinusoidal ectasia, micro-thrombosis and acinar atrophy in autopsy specimens No viral particle actively infecting the hepatic or endothelial cells was detected at in situ hybridization. The morphological features observed within the hepatic parenchyma are not specific and should be considered as the result of an indirect insult resulting from the viral infection or the adopted therapeutic protocols.
Doke, T;Abedini, A;Aldridge, DL;Yang, YW;Park, J;Hernandez, CM;Balzer, MS;Shrestra, R;Coppock, G;Rico, JMI;Han, SY;Kim, J;Xin, S;Piliponsky, AM;Angelozzi, M;Lefebvre, V;Siracusa, MC;Hunter, CA;Susztak, K;
PMID: 35552540 | DOI: 10.1038/s41590-022-01200-7
Inflammation is an important component of fibrosis but immune processes that orchestrate kidney fibrosis are not well understood. Here we apply single-cell sequencing to a mouse model of kidney fibrosis. We identify a subset of kidney tubule cells with a profibrotic-inflammatory phenotype characterized by the expression of cytokines and chemokines associated with immune cell recruitment. Receptor-ligand interaction analysis and experimental validation indicate that CXCL1 secreted by profibrotic tubules recruits CXCR2+ basophils. In mice, these basophils are an important source of interleukin-6 and recruitment of the TH17 subset of helper T cells. Genetic deletion or antibody-based depletion of basophils results in reduced renal fibrosis. Human kidney single-cell, bulk gene expression and immunostaining validate a function for basophils in patients with kidney fibrosis. Collectively, these studies identify basophils as contributors to the development of renal fibrosis and suggest that targeting these cells might be a useful clinical strategy to manage chronic kidney disease.