CNS Neuroscience and Therapeutics
Grabon, W;Bodennec, J;Belmeguenai, A;Bezin, L;
: The endocannabinoid system is recognized as an important player in neuromodulation in the central nervous system (CNS). It comprises cannabinoid receptors, endogenous molecules called endocannabinoids (eCBs) that activate these receptors, and enzymes that synthesize and degrade eCBs. 1 The most abundant eCBs are anandamide and 2-arachidoylglycerol. Many effects of eCBs are mediated by type 1 (CB1R) and type 2 (CB2R) cannabinoid receptors, which are the best known and involved in the homeostatic control of several physiological functions in the brain and other organs. 2 CB1R and CB2R are G protein-coupled receptors (GPCRs) that, in addition to interacting with eCBs, are also activated by synthetic and plantderived cannabinoids. Both were cloned in the early 1990s from human leukemia cells. 3,4 However, it is important to note here that we must take a much broader view of this system. Indeed, studies over the last decade have revealed the existence of a wide range of lipid mediators with eCB-like properties, novel enzymes, and new receptors, effectively complicating our picture of the endocannabinoid system and justifying the use of endocannabinoidome to describe it. 5 CB1R is the most prevalent GPCR in the CNS and is expressed extensively by most neuron types. 6 This receptor is the major mediator of the psychoactive effects of Cannabis sativa and its derivatives.
Proc Natl Acad Sci U S A. 2014 Nov 3.
Zhang HY, Gao M, Liu QR, Bi GH, Li X, Yang HJ, Gardner EL, Wu J, Xi ZX.
PMID: 25368177 | DOI: 201413210
Cannabinoid CB2 receptors (CB2Rs) have been recently reported to modulate brain dopamine (DA)-related behaviors; however, the cellular mechanisms underlying these actions are unclear. Here we report that CB2Rs are expressed in ventral tegmental area (VTA) DA neurons and functionally modulate DA neuronal excitability and DA-related behavior. In situ hybridization and immunohistochemical assays detected CB2 mRNA and CB2R immunostaining in VTA DA neurons. Electrophysiological studies demonstrated that activation of CB2Rs by JWH133 or other CB2R agonists inhibited VTA DA neuronal firing in vivo and ex vivo, whereas microinjections of JWH133 into the VTA inhibited cocaine self-administration. Importantly, all of the above findings observed in WT or CB1 -/- mice are blocked by CB2R antagonist and absent in CB2 -/- mice. These data suggest that CB2R-mediated reduction of VTA DA neuronal activity may underlie JWH133's modulation of DA-regulated behaviors.
Marinelli, S;Marrone, MC;Di Domenico, M;Marinelli, S;
PMID: 36222019 | DOI: 10.1002/glia.24281
Microglia, the innate immune cells of the central nervous system (CNS), execute their sentinel, housekeeping and defense functions through a panoply of genes, receptors and released cytokines, chemokines and neurotrophic factors. Moreover, microglia functions are closely linked to the constant communication with other cell types, among them neurons. Depending on the signaling pathway and type of stimuli involved, the outcome of microglia operation can be neuroprotective or neurodegenerative. Accordingly, microglia are increasingly becoming considered cellular targets for therapeutic intervention. Among signals controlling microglia activity, the endocannabinoid (EC) system has been shown to exert a neuroprotective role in many neurological diseases. Like neurons, microglia express functional EC receptors and can produce and degrade ECs. Interestingly, boosting EC signaling leads to an anti-inflammatory and neuroprotective microglia phenotype. Nonetheless, little evidence is available on the microglia-mediated therapeutic effects of EC compounds. This review focuses on the EC signals acting on the CNS microglia in physiological and pathological conditions, namely on the CB1R, CB2R and TRPV1-mediated regulation of microglia properties. It also provides new evidence, which strengthens the understanding of mechanisms underlying the control of microglia functions by ECs. Given the broad expression of the EC system in glial and neuronal cells, the resulting picture is the need for in vivo studies in transgenic mouse models to dissect the contribution of EC microglia signaling in the neuroprotective effects of EC-derived compounds.
Barbee, B;Gourley, S;
| DOI: 10.1016/j.addicn.2022.100012
Cocaine use disorder (CUD) is a significant public health issue that generates substantial personal, familial, and economic burdens. Still, there are no FDA-approved pharmacotherapies for CUD. Cocaine-dependent individuals report anxiety during withdrawal, and alleviation of anxiety and other negative affective states may be critical for maintaining drug abstinence. However, the neurobiological mechanisms underlying abstinence-related anxiety in humans or anxiety-like behavior in rodents are not fully understood. This review summarizes investigations regarding anxiety-like behavior in mice and rats undergoing cocaine abstinence, as assessed using four of the most common anxiety-related assays: the elevated plus (or its derivative, the elevated zero) maze, open field test, light-dark transition test, and defensive burying task. We first summarize available evidence that cocaine abstinence generates anxiety-like behavior that persists throughout protracted abstinence. Then, we examine investigations concerning neuropeptide, neurotransmitter, and neuromodulator systems in cocaine abstinence-induced anxiety-like behavior. Throughout, we discuss how differences in sex, rodent strain, cocaine dose and dosing strategy, and abstinence duration interact to generate anxiety-like behavior.
Nature Cardiovascular Research
Yamada, S;Ko, T;Hatsuse, S;Nomura, S;Zhang, B;Dai, Z;Inoue, S;Kubota, M;Sawami, K;Yamada, T;Sassa, T;Katagiri, M;Fujita, K;Katoh, M;Ito, M;Harada, M;Toko, H;Takeda, N;Morita, H;Aburatani, H;Komuro, I;
| DOI: 10.1038/s44161-022-00140-7
The underlying mechanisms of ventricular remodeling after myocardial infarction (MI) remain largely unknown. In this study, we performed an integrative analysis of spatial transcriptomics and single-nucleus RNA sequencing (snRNA-seq) in a murine MI model and found that mechanical stress-response genes are expressed at the border zone and play a critical role in left ventricular remodeling after MI. An integrative analysis of snRNA-seq and spatial transcriptome of the heart tissue after MI identified the unique cluster that appeared at the border zone in an early stage, highly expressing mechano-sensing genes, such as Csrp3. AAV9-mediated gene silencing and overexpression of Csrp3 demonstrated that upregulation of Csrp3 plays critical roles in preventing cardiac remodeling after MI by regulation of genes associated with mechano-sensing. Overall, our study not only provides an insight into spatiotemporal molecular changes after MI but also highlights that the mechano-sensing genes at the border zone act as adaptive regulators of left ventricular remodeling.
International Journal of Molecular Sciences
García-Gutiérrez, M;Navarrete, F;Gasparyan, A;Navarro, D;Morcuende, Á;Femenía, T;Manzanares, J;
| DOI: 10.3390/ijms23115908
Cumulative evidence has pointed out cannabinoid CB2 receptors (CB2r) as a potential therapeutic key target for treating alcohol use disorder (AUD). This review provides the most relevant results obtained from rodent and human studies, including an integrative section focused on the involvement of CB2r in the neurobiology of alcohol addiction. A literature search was conducted using the electronic databases Medline and Scopus for articles. The search strategy was as follows: “Receptor, Cannabinoid, CB2” AND “Alcohol-Related Disorders” AND “human/or patients”; “Receptor, Cannabinoid, CB2” AND “Alcohol” OR “Ethanol” AND “rodents/or mice/or rats”. Pharmacological approaches demonstrated that the activation or blockade of CB2r modulated different alcohol-addictive behaviors. Rodent models of alcoholism revealed significant alterations of CB2r in brain areas of the reward system. In addition, mice lacking CB2r (CB2KO) show increased alcohol consumption, motivation, and relapse alterations. It has been stressed that the potential neurobiological mechanisms underlying their behavioral effects involve critical elements of the alcohol reward system. Interestingly, recent postmortem studies showed CNR2 alterations in brain areas of alcoholic patients. Moreover, although the number of studies is limited, the results revealed an association between some genetic alterations of the CNR2 and an increased risk for developing AUD. This review provides evidence that CB2r may play a role in alcohol addiction. Clinical studies are necessary to figure out whether CB2r ligands may prove useful for the treatment of AUD in humans.
Stempel AV, Stumpf A, Zhang HY, Özdoğan T, Pannasch U, Theis AK, Otte DM, Wojtalla A, Rácz I, Ponomarenko A, Xi ZX, Zimmer A, Schmitz D.
PMID: 27133464 | DOI: 10.1016/j.neuron.2016.03.034
Endocannabinoids (eCBs) exert major control over neuronal activity by activating cannabinoid receptors (CBRs). The functionality of the eCB system is primarily ascribed to the well-documented retrograde activation of presynaptic CB1Rs. We find that action potential-driven eCB release leads to a long-lasting membrane potential hyperpolarization in hippocampal principal cells that is independent of CB1Rs. The hyperpolarization, which is specific to CA3 and CA2 pyramidal cells (PCs), depends on the activation of neuronal CB2Rs, as shown by a combined pharmacogenetic and immunohistochemical approach. Upon activation, they modulate the activity of the sodium-bicarbonate co-transporter, leading to a hyperpolarization of the neuron. CB2R activation occurred in a purely self-regulatory manner, robustly altered the input/output function of CA3 PCs, and modulated gamma oscillations in vivo. To conclude, we describe a cell type-specific plasticity mechanism in the hippocampus that provides evidence for the neuronal expression of CB2Rs and emphasizes their importance in basic neuronal transmission.
Mifflin JJ, Dupuis LE, Alcala NE, Russell LG, Kern CB.
PMID: 29920846 | DOI: 10.1002/dvdy.24641
Abstract
BACKGROUND:
The origin of the intercalated cushions that develop into the anterior cusp of the pulmonary valve (PV) and the noncoronary cusp of the aortic valve (AV) is not well understood.
RESULTS:
Cre transgenes in combination with the Rosa TdTomato-EGFP reporter were used to generate three-dimensional lineage mapping of AV and PV cusps during intercalated cushion development. Tie2-Cre;EGFP was used to mark endothelial-derived mesenchymal cells, Wnt1-Cre;EGFP for cardiac neural crest and cardiac Troponin T (Tnnt2)Cre;EGFP, for myocardial lineage. The highest percentage of intercalated cushion cells at embryonic day (E) 12.5 was Tnnt2-Cre; EGFP positive; 68.0% for the PV and 50.0% AV. Neither Tnnt2 mRNA nor Tnnt2-Cre protein was expressed in the intercalated cushions; and the Tnnt2-Cre lineage intercalated cushion cells were also positive for the mesenchymal markers Sox9 and versican. Tnnt2-Cre lineage was present within the forming intercalated cushions from E11.5 and was present in the intercalated cushion derived PV and AV cusps and localized to the fibrosa layer at postnatal day 0.
CONCLUSIONS:
Intercalated cushions of the developing outflow tract are populated with Tnnt2-Cre derived cells, a Cre reporter previously used for tracing and excision of myocardial cells and not previously associated with mesenchymal cells.
Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance
Cui, M;Atmanli, A;Morales, MG;Tan, W;Chen, K;Xiao, X;Xu, L;Liu, N;Bassel-Duby, R;Olson, EN;
PMID: 34489413 | DOI: 10.1038/s41467-021-25653-w
Following injury, cells in regenerative tissues have the ability to regrow. The mechanisms whereby regenerating cells adapt to injury-induced stress conditions and activate the regenerative program remain to be defined. Here, using the mammalian neonatal heart regeneration model, we show that Nrf1, a stress-responsive transcription factor encoded by the Nuclear Factor Erythroid 2 Like 1 (Nfe2l1) gene, is activated in regenerating cardiomyocytes. Genetic deletion of Nrf1 prevented regenerating cardiomyocytes from activating a transcriptional program required for heart regeneration. Conversely, Nrf1 overexpression protected the adult mouse heart from ischemia/reperfusion (I/R) injury. Nrf1 also protected human induced pluripotent stem cell-derived cardiomyocytes from doxorubicin-induced cardiotoxicity and other cardiotoxins. The protective function of Nrf1 is mediated by a dual stress response mechanism involving activation of the proteasome and redox balance. Our findings reveal that the adaptive stress response mechanism mediated by Nrf1 is required for neonatal heart regeneration and confers cardioprotection in the adult heart.
See K, Tan WLW, Lim EH, Tiang Z, Lee LT, Li PYQ, Luu TDA, Ackers-Johnson M, Foo RS.
PMID: 28790305 | DOI: 10.1038/s41467-017-00319-8
Cardiac regeneration may revolutionize treatment for heart failure but endogenous progenitor-derived cardiomyocytes in the adult mammalian heart are few and pre-existing adult cardiomyocytes divide only at very low rates. Although candidate genes that control cardiomyocyte cell cycle re-entry have been implicated, expression heterogeneity in the cardiomyocyte stress-response has never been explored. Here, we show by single nuclear RNA-sequencing of cardiomyocytes from both mouse and human failing, and non-failing adult hearts that sub-populations of cardiomyocytes upregulate cell cycle activators and inhibitors consequent to the stress-response in vivo. We characterize these subgroups by weighted gene co-expression network analysis and discover long intergenic non-coding RNAs (lincRNA) as key nodal regulators. KD of nodal lincRNAs affects expression levels of genes related to dedifferentiation and cell cycle, within the same gene regulatory network. Our study reveals that sub-populations of adult cardiomyocytes may have a unique endogenous potential for cardiac regeneration in vivo.Adult mammalian cardiomyocytes are predominantly binucleated and unable to divide. Using single nuclear RNA-sequencing of cardiomyocytes from mouse and human failing and non-failing adult hearts, See et al. show that some cardiomyocytes respond to stress by dedifferentiation and cell cycle re-entry regulated by lncRNAs.
Lin, X;Swedlund, B;Ton, MN;Ghazanfar, S;Guibentif, C;Paulissen, C;Baudelet, E;Plaindoux, E;Achouri, Y;Calonne, E;Dubois, C;Mansfield, W;Zaffran, S;Marioni, JC;Fuks, F;Göttgens, B;Lescroart, F;Blanpain, C;
PMID: 35817961 | DOI: 10.1038/s41556-022-00947-3
The mammalian heart arises from various populations of Mesp1-expressing cardiovascular progenitors (CPs) that are specified during the early stages of gastrulation. Mesp1 is a transcription factor that acts as a master regulator of CP specification and differentiation. However, how Mesp1 regulates the chromatin landscape of nascent mesodermal cells to define the temporal and spatial patterning of the distinct populations of CPs remains unknown. Here, by combining ChIP-seq, RNA-seq and ATAC-seq during mouse pluripotent stem cell differentiation, we defined the dynamic remodelling of the chromatin landscape mediated by Mesp1. We identified different enhancers that are temporally regulated to erase the pluripotent state and specify the pools of CPs that mediate heart development. We identified Zic2 and Zic3 as essential cofactors that act with Mesp1 to regulate its transcription-factor activity at key mesodermal enhancers, thereby regulating the chromatin remodelling and gene expression associated with the specification of the different populations of CPs in vivo. Our study identifies the dynamics of the chromatin landscape and enhancer remodelling associated with temporal patterning of early mesodermal cells into the distinct populations of CPs that mediate heart development.