ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Neurosci.
2019 Mar 12
Liu SS, Pickens S, Burma NE, Ibarra-Lecue I, Yang H, Xue L, Cook C, Hakimian JK, Severino AL, Lueptow L, Komarek K, Taylor AMW, Olmstead MC, Carroll FI, Bass CE, Andrews AM, Walwyn W, Trang T, Evans CJ, Leslie F, Cahill CM.
PMID: 30862664 | DOI: 10.1523/JNEUROSCI.0274-19.2019
Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the kappa opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative RT-PCR, florescence in situ hybridization, western blotting and GTPgS autoradiography an upregulation of expression and the function of kappa opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared to surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.Significance StatementWe show that KORs are sufficient to drive the tonic-aversive component of chronic pain - the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high co-morbidity with chronic pain) and substance abuse. Indeed, co-existing psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).
J Neurosci.
2019 Feb 06
Pomrenze MB, Tovar-Diaz J, Blasio A, Maiya R, Giovanetti SM, Lei K, Morikawa H, Hopf FW, Messing RO.
PMID: 30530860 | DOI: 10.1523/JNEUROSCI.2143-18.2018
The central amygdala (CeA) is important for fear responses to discrete cues. Recent findings indicate that the CeA also contributes to states of sustained apprehension that characterize anxiety, although little is known about the neural circuitry involved. The stress neuropeptide corticotropin releasing factor (CRF) is anxiogenic and is produced by subpopulations of neurons in the lateral CeA and the dorsolateral bed nucleus of the stria terminalis (dlBST). Here we investigated the function of these CRF neurons in stress-induced anxiety using chemogenetics in male rats that express Cre recombinase from a Crh promoter. Anxiety-like behavior was mediated by CRF projections from the CeA to the dlBST and depended on activation of CRF1 receptors and CRF neurons within the dlBST. Our findings identify a CRFCeA→CRFdlBST circuit for generating anxiety-like behavior and provide mechanistic support for recent human and primate data suggesting that the CeA and BST act together to generate states of anxiety.SIGNIFICANCE STATEMENT Anxiety is a negative emotional state critical to survival, but persistent, exaggerated apprehension causes substantial morbidity. Identifying brain regions and neurotransmitter systems that drive anxiety can help in developing effective treatment. Much evidence in rodents indicates that neurons in the bed nucleus of the stria terminalis (BST) generate anxiety-like behaviors, but more recent findings also implicate neurons of the CeA. The neuronal subpopulations and circuitry that generate anxiety are currently subjects of intense investigation. Here we show that CeA neurons that release the stress neuropeptide corticotropin-releasing factor (CRF) drive anxiety-like behaviors in rats via a pathway to dorsal BST that activates local BST CRF neurons. Thus, our findings identify a CeA→BST CRF neuropeptide circuit that generates anxiety-like behavior.
Nature communications
2022 Sep 26
Matson, KJE;Russ, DE;Kathe, C;Hua, I;Maric, D;Ding, Y;Krynitsky, J;Pursley, R;Sathyamurthy, A;Squair, JW;Levi, BP;Courtine, G;Levine, AJ;
PMID: 36163250 | DOI: 10.1038/s41467-022-33184-1
Elife.
2018 Mar 20
Niquille M, Limoni G, Markopoulos F, Cadilhac C, Prados J, Holtmaat A, Dayer A.
PMID: 29557780 | DOI: 10.7554/eLife.32017
Delineating the basic cellular components of cortical inhibitory circuits remains a fundamental issue in order to understand their specific contributions to microcircuit function. It is still unclear how current classifications of cortical interneuron subtypes relate to biological processes such as their developmental specification. Here we identified the developmental trajectory of neurogliaform cells (NGCs), the main effectors of a powerful inhibitory motif recruited by long-range connections. Using in vivo genetic lineage-tracing in mice, we report that NGCs originate from a specific pool of 5-HT3AR-expressing Hmx3+ cells located in the preoptic area (POA). Hmx3-derived 5-HT3AR+ cortical interneurons (INs) expressed the transcription factors PROX1, NR2F2, the marker reelin but not VIP and exhibited the molecular, morphological and electrophysiological profile of NGCs. Overall, these results indicate that NGCs are a distinct class of INs with a unique developmental trajectory and open the possibility to study their specific functional contribution to cortical inhibitory microcircuit motifs.
Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals
2022 Nov 10
Fuchs, MAA;Schrankl, J;Wagner, C;Daniel, C;Kurtz, A;Broeker, KA;
PMID: 36354355 | DOI: 10.1080/1354750X.2022.2146196
Journal of chemical neuroanatomy
2022 Sep 28
Viden, A;Ch'ng, SS;Walker, LC;Shesham, A;Hamilton, SM;Smith, CM;Lawrence, AJ;
PMID: 36182026 | DOI: 10.1016/j.jchemneu.2022.102167
bioRxiv : the preprint server for biology
2023 Feb 24
Matsumura, K;Choi, IB;Asokan, M;Le, NN;Natividad, L;Dobbs, LK;
PMID: 36865224 | DOI: 10.1101/2023.02.23.529807
J Hepatol.
2019 Mar 29
Aronson SJ, Bakker RS, Shi X, Duijst S, ten Bloemendaal L, de Waart DR, Verheij J, Elferink RPO, Beuers U, Paulusma CC, Bosma PJ.
PMID: 30935993 | DOI: 10.1016/j.jhep.2019.03.021
Abstract
BACKGROUND:
Progressive familial intrahepatic cholestasis type 3 (PFIC3) often leads to end-stage liver disease before adulthood with limited therapeutic options, due to impaired ABCB4 dependent phospholipid transport to bile. To restore ABCB4 function we propose adeno-associated virus serotype 8 (AAV8)-mediated gene therapy directed to the liver, although achieving stable transgene expression in hyperproliferative tissue is challenging. By restoring the phospholipid content in bile to levels that prevent liver damage, this study aims for stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3.
METHODS:
Ten weeks old Abcb4-/- mice received a single dose of AAV8-hABCB4 (n=10) or AAV8-GFP (n=7) under control of a liver specific promoter via tail vein injection. Animals were sacrificed either 10 or 26 weeks after vector administration to assess transgene persistence, after being challenged with a 0.1% cholate diet for 2 weeks. Periodic evaluation of plasma cholestatic markers was performed and bile duct cannulation enabled analysis of biliary phospholipids. Liver fibrosis and the Ki67 proliferation index were assessed by (immuno-)histochemistry.
RESULTS:
Stable transgene expression was achieved in all animals that received AAV8-hABCB4 up to 26 weeks after administration, which restored biliary phospholipid excretion to levels that ameliorate liver damage. This resulted in normalization of plasma cholestatic markers, prevented progressive liver fibrosis and reduced hepatocyte proliferation for the duration of the study.
CONCLUSION:
Liver-directed gene therapy provides stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3, encouraging translational studies to verify clinical feasibility.
LAY SUMMARY:
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe genetic liver disease that results from impaired transport of lipids to bile, which makes the bile toxic to liver cells. Because therapeutic options are currently limited, this study aims to evaluate gene therapy to correct the underlying genetic defect in a mouse model of this disease. By introducing a functional copy of the missing gene in liver cells of mice, we were able to restore lipid transport to bile and strongly reduce damage to the liver. Also proliferation of liver cells was reduced, which contributes to long term correction of the phenotype. Limitations of the mouse model requires further studies to evaluate if this approach can be applied in PFIC3 patients.
JNeurosci
2017 Oct 24
Shi Y, Stornetta RL, Stornetta DS, Onengut-Gumuscu S, Farber EA, Turner SD, Guyenet PG, Bayliss DA.
PMID: 29066557 | DOI: 10.1523/JNEUROSCI.2055-17.2017
The retrotrapezoid nucleus (RTN) consists, by definition, of Phox2b-expressing, glutamatergic, non-catecholaminergic, non-cholinergic neurons located in the parafacial region of the medulla oblongata. An unknown proportion of RTN neurons are central respiratory chemoreceptors and there is mounting evidence for biochemical diversity among these cells. Here, we used multiplexed in situ hybridization and single-cell RNA-Seq in male and female mice to provide a more comprehensive view of the phenotypic diversity of RTN neurons. We now demonstrate that the RTN of mice can be identified with a single and specific marker, Nmb mRNA. Most (∼75%) RTN neurons express low-to-moderate levels of Nmb and display chemoreceptor properties. Namely they are activated by hypercapnia, but not by hypoxia, and express proton sensors, Kcnk5 and Gpr4 These Nmb-low RTN neurons also express varying levels of transcripts for Gal, Penk and Adcyap1,and receptors for substance P, orexin, serotonin and ATP. A subset of RTN neurons (∼20-25%), typically larger than average, express very high levels of Nmb mRNA. These Nmb-high RTN neurons do not express Fos after hypercapnia, have low-to-undetectable levels of Kcnk5 or Gpr4 transcripts; they also express Adcyap1, but are essentially devoid of Penk and Gal transcripts. In male rats, Nmb is also a marker of the RTN but, unlike in mice, this gene is expressed by other types of nearby neurons located within the ventromedial medulla. In sum, Nmb is a selective marker of the RTN in rodents; Nmb-low neurons, the vast majority, are central respiratory chemoreceptors whereas Nmb-high neurons likely have other functions.SIGNIFICANCE STATEMENTCentral respiratory chemoreceptors regulate arterial PCO2 by adjusting lung ventilation. Such cells have recently been identified within the retrotrapezoid nucleus (RTN), a brainstem nucleus defined by genetic lineage and a cumbersome combination of markers. Using single-cell RNA-Seq and multiplexed in situ hybridization, we show here that a single marker, Neuromedin B mRNA (Nmb), identifies RTN neurons in rodents. We also suggest that >75% of these Nmb neurons are chemoreceptors because they are strongly activated by hypercapnia and express high levels of proton sensors (Kcnk5 and Gpr4). The other RTN neurons express very high levels of Nmb, but low levels of Kcnk5/Gpr4/pre-pro-galanin/pre-pro-enkephalin, and do not respond to hypercapnia. Their function is unknown.
J Virol.
2018 Jun 20
Elliott G, Pheasant K, Ebert-Keel K, Stylianou J, Franklyn A, Jones J.
PMID: 29925667 | DOI: 10.1128/JVI.00818-18
The HSV1 virion host shutoff (vhs) protein is an endoribonuclease that binds to the cellular translation initiation machinery and degrades associated mRNAs, resulting in shut-off of host protein synthesis. Hence its unrestrained activity is considered to be lethal, and it has been proposed that vhs is regulated by two other virus proteins, VP22 and VP16. We have found that during infection, translation of vhs requires VP22 but not the VP22-VP16 complex. Moreover, in the absence of VP22, vhs is not overactive against cellular or viral transcripts. In transfected cells, vhs was also poorly translated, correlating with aberrant localization of its mRNA. Counterintuitively, vhs mRNA was predominantly nuclear in cells where vhs protein was detected. Likewise, transcripts from co-transfected plasmids were also retained in the same nuclei where vhs mRNA was located, while polyA binding protein (PABP) was relocalised to the nucleus in a vhs-dependent manner, implying a general block to mRNA export. Co-expression of VP16 and VP22 rescued cytoplasmic localization of vhs mRNA but failed to rescue vhs translation. We identified a 230-nucleotide sequence in the 5' region of vhs that blocked its translation and, when transferred to a heterologous GFP transcript, reduced translation without altering mRNA levels or localization. We propose that expression of vhs is tightly regulated by a combination of inherent untranslatability and auto-induced nuclear retention of its mRNA that results in a negative feedback loop, with nuclear retention but not translation of vhs mRNA being the target of rescue by the vhs-VP16-VP22 complex.IMPORTANCE A myriad of gene expression strategies has been discovered through studies carried out on viruses. This report concerns the regulation of the HSV1 vhs endoribonuclease, a virus factor that is important for counteracting host antiviral responses by degrading their mRNAs, but which must be regulated during infection to ensure that it does not act against and inhibit the virus itself. We show that regulation of vhs involves multifaceted post-transcriptional cellular and viral processes, including aberrant mRNA localization and a novel, autoregulated negative feedback loop to target its own and co-expressed mRNAs for nuclear retention, an activity that is relieved by co-expression of two other virus proteins, VP22 and VP16. These studies reveal the interplay of strategies by which multiple virus-encoded factors co-ordinate gene expression at the time they are needed. These findings are broadly relevant to both virus and cellular gene expression.
Cell Rep
2020 Feb 11
Heinsbroek JA1, Bobadilla AC2, Dereschewitz E2, Assali A2, Chalhoub RM2, Cowan CW2, Kalivas PW3.
PMID: 32049028 | DOI: 10.1016/j.celrep.2020.01.023
Cell reports
2023 Mar 21
Frezel, N;Ranucci, M;Foster, E;Wende, H;Pelczar, P;Mendes, R;Ganley, RP;Werynska, K;d'Aquin, S;Beccarini, C;Birchmeier, C;Zeilhofer, HU;Wildner, H;
PMID: 36947543 | DOI: 10.1016/j.celrep.2023.112295
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com