Savage, A;Risquez, C;Gomi, K;Schreiner, R;Borczuk, AC;Worgall, S;Silver, RB;
PMID: 36910476 | DOI: 10.3389/fmed.2023.1139397
In addition to the traditional activation of resident receptors by release of local mediators, new evidence favors the existence of exosomes in cell-to-cell communication that mediates delivery of specific cargo to modulate recipient cell function. We report that mast cell exosomes are an additional source of pro-fibrotic substances and constitute a unique pathway for the generation of excess collagen.We use primary human lung fibroblasts (HLFs) to demonstrate the uptake of labeled exosomes isolated from the human mast cell line HMC-1 (MC-EXOs), previously shown to contain protein cargo in common with human mast cell exosomes.The MC-EXO uptake by HLF is to the cytosol and increases both proline hydroxylation in HLF lysate and secreted collagen, within 24 h, which is sustained over 72 h, the same time required for transforming growth factor-β (TGF-β) to activate collagen synthesis in the HLFs. Unlike TGF-β, MC-EXO uptake does not induce fibrillar gene activation or invoke the Smad-nuclear transcription pathway. We show that MC-EXO uptake and TGF-β have an additive effect on collagen synthesis in HLF and postulate that MC-EXO uptake by HLFs is a contributing factor to excess collagen synthesis and represents a unique paradigm for understanding fibrosis.It is known that, in the lungs, mast cells are more activated and increase in number with inflammation, injury and viral infection associated with fibrosis. With the reported increased incidence of post-COVID-pulmonary fibrosis (PCPF), data from patients with severe COVID-19 are presented that show an increase in the mast cell number in lung parenchyma, the site of PCPF. Our findings provide a rationale for targeting multiple fibrogenic pathways in the management of lung fibrosis and the use of mast cell exosomes as a biomarker for the prognostic and diagnostic management of evolving fibrotic lung disease.
Science translational medicine
Ko, KI;Merlet, JJ;DerGarabedian, BP;Zhen, H;Suzuki-Horiuchi, Y;Hedberg, ML;Hu, E;Nguyen, AT;Prouty, S;Alawi, F;Walsh, MC;Choi, Y;Millar, SE;Cliff, A;Romero, J;Garvin, MR;Seykora, JT;Jacobson, D;Graves, DT;
PMID: 35108061 | DOI: 10.1126/scitranslmed.abj0324
Skin is composed of diverse cell populations that cooperatively maintain homeostasis. Up-regulation of the nuclear factor κB (NF-κB) pathway may lead to the development of chronic inflammatory disorders of the skin, but its role during the early events remains unclear. Through analysis of single-cell RNA sequencing data via iterative random forest leave one out prediction, an explainable artificial intelligence method, we identified an immunoregulatory role for a unique paired related homeobox-1 (Prx1)+ fibroblast subpopulation. Disruption of Ikkb-NF-κB under homeostatic conditions in these fibroblasts paradoxically induced skin inflammation due to the overexpression of C-C motif chemokine ligand 11 (CCL11; or eotaxin-1) characterized by eosinophil infiltration and a subsequent TH2 immune response. Because the inflammatory phenotype resembled that seen in human atopic dermatitis (AD), we examined human AD skin samples and found that human AD fibroblasts also overexpressed CCL11 and that perturbation of Ikkb-NF-κB in primary human dermal fibroblasts up-regulated CCL11. Monoclonal antibody treatment against CCL11 was effective in reducing the eosinophilia and TH2 inflammation in a mouse model. Together, the murine model and human AD specimens point to dysregulated Prx1+ fibroblasts as a previously unrecognized etiologic factor that may contribute to the pathogenesis of AD and suggest that targeting CCL11 may be a way to treat AD-like skin lesions.
Sodagar, A;Javed, R;Tahir, H;Razak, SIA;Shakir, M;Naeem, M;Yusof, AHA;Sagadevan, S;Hazafa, A;Uddin, J;Khan, A;Al-Harrasi, A;
PMID: 35883527 | DOI: 10.3390/biom12070971
The number of deaths has been increased due to COVID-19 infections and uncertain neurological complications associated with the central nervous system. Post-infections and neurological manifestations in neuronal tissues caused by COVID-19 are still unknown and there is a need to explore how brainstorming promoted congenital impairment, dementia, and Alzheimer's disease. SARS-CoV-2 neuro-invasion studies in vivo are still rare, despite the fact that other beta-coronaviruses have shown similar properties. Neural (olfactory or vagal) and hematogenous (crossing the blood-brain barrier) pathways have been hypothesized in light of new evidence showing the existence of SARS-CoV-2 host cell entry receptors into the specific components of human nerve and vascular tissue. Spike proteins are the primary key and structural component of the COVID-19 that promotes the infection into brain cells. Neurological manifestations and serious neurodegeneration occur through the binding of spike proteins to ACE2 receptor. The emerging evidence reported that, due to the high rate in the immediate wake of viral infection, the olfactory bulb, thalamus, and brain stem are intensely infected through a trans-synaptic transfer of the virus. It also instructs the release of chemokines, cytokines, and inflammatory signals immensely to the blood-brain barrier and infects the astrocytes, which causes neuroinflammation and neuron death; and this induction of excessive inflammation and immune response developed in more neurodegeneration complications. The present review revealed the pathophysiological effects, molecular, and cellular mechanisms of possible entry routes into the brain, pathogenicity of autoantibodies and emerging immunotherapies against COVID-19.
Primard, C;Monchâtre-Leroy, E;Del Campo, J;Valsesia, S;Nikly, E;Chevandier, M;Boué, F;Servat, A;Wasniewski, M;Picard-Meyer, E;Courant, T;Collin, N;Salguero, F;Le Vert, A;Guyon-Gellin, D;Nicolas, F;
| DOI: 10.3389/fimmu.2023.1188605
Spike-based COVID-19 vaccines induce potent neutralizing antibodies but their efficacy against SARS-CoV-2 variants decreases. OVX033 is a recombinant protein composed of the full-length nucleocapsid (N) protein of SARS-CoV-2 genetically fused to oligoDOM , a self-assembling domain which improves antigen immunogenicity. OVX033 including N as an antigenic target is proposed as new vaccine candidate providing broad-spectrum protection against sarbecoviruses. OVX033 demonstrated its ability to trigger cross-reactive T cell responses and cross-protection against three variants of SARS-CoV-2 (B.1 Europe, Delta B.1.617.2, and Omicron B.1.1.529) in a hamster challenge model, as evidenced by lower weight loss, lower lung viral loads, and reduced lung histopathological lesions.
Case reports in pathology
Butler, JT;Chellappan, R;Litovsky, S;Leal, SM;Benson, PV;
PMID: 37180570 | DOI: 10.1155/2023/9998749
While rare, coronary stent infections present with significant mortality-with most infections and further complications occurring within months of percutaneous coronary intervention (PCI). Here, we discuss a post-COVID-19 patient who presented approximately one year after PCI for declotting of an arteriovenous graft (AVG). Upon admission, the patient was found to be bacteremic with multilobar pneumonia and an infection of the AVG. Empiric antibiotics were started, and blood cultures were subsequently positive for MRSA. Removal of the AVG was unsuccessful, and two days after admission, the patient passed. Autopsy revealed a perivascular abscess in the RCA near the origin of the stent with a ground section of the RCA with stent revealing abundant calcific atherosclerosis and marked necrosis of the artery wall. The cause of death was determined to be sepsis complicating coronary artery disease and chronic renal failure.