Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (126)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • (-) Remove Gad1 filter Gad1 (90)
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • (-) Remove GFP filter GFP (26)
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (62) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (29) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (13) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (3) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (2) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter

Research area

  • Neuroscience (105) Apply Neuroscience filter
  • Cancer (7) Apply Cancer filter
  • CGT (4) Apply CGT filter
  • Other (4) Apply Other filter
  • Aging (2) Apply Aging filter
  • Autism spectrum disorder (2) Apply Autism spectrum disorder filter
  • Behavior (2) Apply Behavior filter
  • Development (2) Apply Development filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Injury (2) Apply Injury filter
  • Parkinson's Disease (2) Apply Parkinson's Disease filter
  • Stress (2) Apply Stress filter
  • Addiction (1) Apply Addiction filter
  • Anesthesia (1) Apply Anesthesia filter
  • Anxiety (1) Apply Anxiety filter
  • Autism (1) Apply Autism filter
  • Autism spectrum disorders (1) Apply Autism spectrum disorders filter
  • behavioral (1) Apply behavioral filter
  • Brain calcification (1) Apply Brain calcification filter
  • Developmental (1) Apply Developmental filter
  • Epilepsy (1) Apply Epilepsy filter
  • Evolution (1) Apply Evolution filter
  • Exercise (1) Apply Exercise filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Hearing (1) Apply Hearing filter
  • Hypoxia (1) Apply Hypoxia filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Inflammation (1) Apply Inflammation filter
  • Innate Immunity (1) Apply Innate Immunity filter
  • Itch (1) Apply Itch filter
  • Liver (1) Apply Liver filter
  • lncRNA (1) Apply lncRNA filter
  • Neural Mapping (1) Apply Neural Mapping filter
  • Neuro development (1) Apply Neuro development filter
  • Neuropathic pain (1) Apply Neuropathic pain filter
  • Other: Apneas (1) Apply Other: Apneas filter
  • Other: Behavorial (1) Apply Other: Behavorial filter
  • Other: Cartilaginous fish (1) Apply Other: Cartilaginous fish filter
  • Pain (1) Apply Pain filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Regeneration (1) Apply Regeneration filter
  • Reward-related learning (1) Apply Reward-related learning filter
  • Sighing (1) Apply Sighing filter
  • Sleep (1) Apply Sleep filter
  • Social Behavior (1) Apply Social Behavior filter
  • T-cell therapies (1) Apply T-cell therapies filter

Category

  • Publications (126) Apply Publications filter
Vasopressin excites interneurons to suppress hippocampal network activity across a broad span of brain maturity at birth

Proc Natl Acad Sci U S A.

2017 Nov 02

Spoljarica A, Sejaa P, Spoljaric I, Virtanen MA, Lindfors J, Uvarov P, Summanen M, Crow AK, Hsueh B, Puskarjov M, Ruusuvuori E, Voipio J, Deisseroth K, Kaila K.
PMID: 29183979 | DOI: 10.1073/pnas.1717337114

During birth in mammals, a pronounced surge of fetal peripheral stress hormones takes place to promote survival in the transition to the extrauterine environment. However, it is not known whether the hormonal signaling involves central pathways with direct protective effects on the perinatal brain. Here, we show that arginine vasopressin specifically activates interneurons to suppress spontaneous network events in the perinatal hippocampus. Experiments done on the altricial rat and precocial guinea pig neonate demonstrated that the effect of vasopressin is not dependent on the level of maturation (depolarizing vs. hyperpolarizing) of postsynaptic GABAA receptor actions. Thus, the fetal mammalian brain is equipped with an evolutionarily conserved mechanism well-suited to suppress energetically expensive correlated network events under conditions of reduced oxygen supply at birth.

Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types.

Nat Neurosci.

2018 Apr 23

Häring M, Zeisel A, Hochgerner H, Rinwa P, Jakobsson JET, Lönnerberg P, La Manno G, Sharma N, Borgius L, Kiehn O, Lagerström MC, Linnarsson S, Ernfors P.
PMID: 29686262 | DOI: 10.1038/s41593-018-0141-1

The dorsal horn of the spinal cord is critical to processing distinct modalities of noxious and innocuous sensation, but little is known of the neuronal subtypes involved, hampering efforts to deduce principles governing somatic sensation. Here we used single-cell RNA sequencing to classify sensory neurons in the mouse dorsal horn. We identified 15 inhibitory and 15 excitatory molecular subtypes of neurons, equaling the complexity in cerebral cortex. Validating our classification scheme in vivo and matching cell types to anatomy of the dorsal horn by spatial transcriptomics reveals laminar enrichment for each of the cell types. Neuron types, when combined, define a multilayered organization with like neurons layered together. Employing our scheme, we find that heat and cold stimuli activate discrete sets of both excitatory and inhibitory neuron types. This work provides a systematic and comprehensive molecular classification of spinal cord sensory neurons, enabling functional interrogation of sensory processing.

Massive Multiplexing of Spatially Resolved Single Neuron Projections with Axonal BARseq

bioRxiv : the preprint server for biology

2023 Feb 18

Yuan, L;Chen, X;Zhan, H;Gilbert, HL;Zador, AM;
PMID: 36824753 | DOI: 10.1101/2023.02.18.528865

Neurons in the cortex are heterogenous, sending diverse axonal projections to multiple brain regions. Unraveling the logic of these projections requires single-neuron resolution. Although a growing number of techniques have enabled high-throughput reconstruction, these techniques are typically limited to dozens or at most hundreds of neurons per brain, requiring that statistical analyses combine data from different specimens. Here we present axonal BARseq, a high-throughput approach based on reading out nucleic acid barcodes using in situ RNA sequencing, which enables analysis of even densely labeled neurons. As a proof of principle, we have mapped the long-range projections of >8000 mouse primary auditory cortex neurons from a single brain. We identified major cell types based on projection targets and axonal trajectory. The large sample size enabled us to systematically quantify the projections of intratelencephalic (IT) neurons, and revealed that individual IT neurons project to different layers in an area-dependent fashion. Axonal BARseq is a powerful technique for studying the heterogeneity of single neuronal projections at high throughput within individual brains.
Independent response modulation of visual cortical neurons by attentional and behavioral states

Neuron

2022 Sep 16

Kanamori, T;Mrsic-Flogel, TD;
PMID: 36137550 | DOI: 10.1016/j.neuron.2022.08.028

Sensory processing is influenced by cognitive and behavioral states, but how these states interact to modulate responses of individual neurons is unknown. We trained mice in a visual discrimination task wherein they attended to different locations within a hemifield while running or sitting still, enabling us to examine how visual responses are modulated by spatial attention and running behavior. We found that spatial attention improved discrimination performance and strengthened visual responses of excitatory neurons in the primary visual cortex whose receptive fields overlapped with the attended location. Although individual neurons were modulated by both spatial attention and running, the magnitudes of these influences were not correlated. While running-dependent modulation was stable across days, attentional modulation was dynamic, influencing individual neurons to different degrees after repeated changes in attentional states. Thus, despite similar effects on neural responses, spatial attention and running act independently with different dynamics, implying separable mechanisms for their implementation.
A red nucleus-VTA glutamate pathway underlies exercise reward and the therapeutic effect of exercise on cocaine use

Science advances

2022 Sep 02

He, Y;Madeo, G;Liang, Y;Zhang, C;Hempel, B;Liu, X;Mu, L;Liu, S;Bi, GH;Galaj, E;Zhang, HY;Shen, H;McDevitt, RA;Gardner, EL;Liu, QS;Xi, ZX;
PMID: 36054363 | DOI: 10.1126/sciadv.abo1440

Physical exercise is rewarding and protective against drug abuse and addiction. However, the neural mechanisms underlying these actions remain unclear. Here, we report that long-term wheel-running produced a more robust increase in c-fos expression in the red nucleus (RN) than in other brain regions. Anatomic and functional assays demonstrated that most RN magnocellular portion (RNm) neurons are glutamatergic. Wheel-running activates a subset of RNm glutamate neurons that project to ventral tegmental area (VTA) dopamine neurons. Optogenetic stimulation of this pathway was rewarding, as assessed by intracranial self-stimulation and conditioned place preference, whereas optical inhibition blocked wheel-running behavior. Running wheel access decreased cocaine self-administration and cocaine seeking during extinction. Last, optogenetic stimulation of the RNm-to-VTA glutamate pathway inhibited responding to cocaine. Together, these findings indicate that physical exercise activates a specific RNm-to-VTA glutamatergic pathway, producing exercise reward and reducing cocaine intake.
Biallelic PAX5 mutations cause hypogammaglobulinemia, sensorimotor deficits, and autism spectrum disorder

The Journal of experimental medicine

2022 Sep 05

Kaiser, FMP;Gruenbacher, S;Oyaga, MR;Nio, E;Jaritz, M;Sun, Q;van der Zwaag, W;Kreidl, E;Zopf, LM;Dalm, VASH;Pel, J;Gaiser, C;van der Vliet, R;Wahl, L;Rietman, A;Hill, L;Leca, I;Driessen, G;Laffeber, C;Brooks, A;Katsikis, PD;Lebbink, JHG;Tachibana, K;van der Burg, M;De Zeeuw, CI;Badura, A;Busslinger, M;
PMID: 35947077 | DOI: 10.1084/jem.20220498

The genetic causes of primary antibody deficiencies and autism spectrum disorder (ASD) are largely unknown. Here, we report a patient with hypogammaglobulinemia and ASD who carries biallelic mutations in the transcription factor PAX5. A patient-specific Pax5 mutant mouse revealed an early B cell developmental block and impaired immune responses as the cause of hypogammaglobulinemia. Pax5 mutant mice displayed behavioral deficits in all ASD domains. The patient and the mouse model showed aberrant cerebellar foliation and severely impaired sensorimotor learning. PAX5 deficiency also caused profound hypoplasia of the substantia nigra and ventral tegmental area due to loss of GABAergic neurons, thus affecting two midbrain hubs, controlling motor function and reward processing, respectively. Heterozygous Pax5 mutant mice exhibited similar anatomic and behavioral abnormalities. Lineage tracing identified Pax5 as a crucial regulator of cerebellar morphogenesis and midbrain GABAergic neurogenesis. These findings reveal new roles of Pax5 in brain development and unravel the underlying mechanism of a novel immunological and neurodevelopmental syndrome.
Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer

Nature Cancer

2021 Aug 02

Qiao, Y;Choi, J;Tien, J;Simko, S;Rajendiran, T;Vo, J;Delekta, A;Wang, L;Xiao, L;Hodge, N;Desai, P;Mendoza, S;Juckette, K;Xu, A;Soni, T;Su, F;Wang, R;Cao, X;Yu, J;Kryczek, I;Wang, X;Wang, X;Siddiqui, J;Wang, Z;Bernard, A;Fernandez-Salas, E;Navone, N;Ellison, S;Ding, K;Eskelinen, E;Heath, E;Klionsky, D;Zou, W;Chinnaiyan, A;
| DOI: 10.1038/s43018-021-00237-1

(A) Myc-CaP wild-type (WT) and _Atg5_ knockout (_Atg5_ KO) cells were treated with increasing concentrations of ESK981 for 24 hours. Atg5 and LC3 levels were assessed by western blot from three independent experiments. GAPDH served as a loading control. (B) Representative morphology of vacuolization in Myc-CaP wild-type (WT) and _Atg5_ knockout (_Atg5_ KO) cells after treatment with control or 100 nM ESK981 for 24 hours from three independent experiments. (C) Autophagosome content of Myc-CaP WT and _Atg5_ KO cells were measured by CYTO-ID assay after being treated with increasing concentrations of ESK981 for 24 hours. Data were analyzed by two-tailed unpaired t test from three independent experiments and presented as mean ± SEM. P-value indicated. (D) Mouse cytokine array using Myc-CaP WT and _Atg5_ KO cell supernatant after treatment with 10 ng/ml mouse interferon gamma (mIFNγ) or mIFNγ + 100 nM ESK981 for 24 hours. Differential expression candidate dots are highlighted by boxes. (E) Mouse CXCL10 protein levels were measured by ELISA in Myc-CaP WT and _Atg5_ KO conditioned medium with the indicated treatment for 24 hours. Data were analyzed by two-tailed unpaired t test from three independent experiments and presented as mean ± SEM. P-value indicated. (F) mRNA levels of _Cxcl10_ and _Cxcl9_ were measured by qPCR in Myc-CaP WT and _Atg5_ KO cells with 50 nM or 100 nM ESK981 and 10 ng/ml mIFNγ treatment for 24 hours. Data were analyzed by two-tailed unpaired t test from three independent experiments and presented as mean ± SEM. P-value indicated.
Dopamine promotes aggression in mice via ventral tegmental area to lateral septum projections

Nature communications

2021 Nov 23

Mahadevia, D;Saha, R;Manganaro, A;Chuhma, N;Ziolkowski-Blake, A;Morgan, AA;Dumitriu, D;Rayport, S;Ansorge, MS;
PMID: 34815379 | DOI: 10.1038/s41467-021-27092-z

Septal-hypothalamic neuronal activity centrally mediates aggressive behavior and dopamine system hyperactivity is associated with elevated aggression. However, the causal role of dopamine in aggression and its target circuit mechanisms are largely unknown. To address this knowledge gap, we studied the modulatory role of the population- and projection-specific dopamine function in a murine model of aggressive behavior. We find that terminal activity of ventral tegmental area (VTA) dopaminergic neurons selectively projecting to the lateral septum (LS) is sufficient for promoting aggression and necessary for establishing baseline aggression. Within the LS, dopamine acts on D2-receptors to inhibit GABAergic neurons, and septal D2-signaling is necessary for VTA dopaminergic activity to promote aggression. Collectively, our data reveal a powerful modulatory influence of dopaminergic synaptic input on LS function and aggression, effectively linking the clinically pertinent hyper-dopaminergic model of aggression with the classic septal-hypothalamic aggression axis.
Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain

Science.

2016 Jun 24

Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A, Gao D, Fung HL, Chen S, Vijayaraghavan R, Wong J, Chen A, Sheng X, Kaper F, Shen R, Ronaghi M, Fan JB, Wang W, Chun J, Zhang K.
PMID: 27339989 | DOI: 10.1126/science.aaf1204

The human brain has enormously complex cellular diversity and connectivities fundamental to our neural functions, yet difficulties in interrogating individual neurons has impeded understanding of the underlying transcriptional landscape. We developed a scalable approach to sequence and quantify RNA molecules in isolated neuronal nuclei from a postmortem brain, generating 3227 sets of single-neuron data from six distinct regions of the cerebral cortex. Using an iterative clustering and classification approach, we identified 16 neuronal subtypes that were further annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a robust and scalable method for identifying and categorizing single nuclear transcriptomes, revealing shared genes sufficient to distinguish previously unknown and orthologous neuronal subtypes as well as regional identity and transcriptomic heterogeneity within the human brain.

A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins.

Neuron.

2017 Jan 31

François A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C, Beier KT, Ramakrishnan C, Ritola KD, Sharif-Naeini R, Deisseroth K, Delp SL, Malenka RC, Luo L, Hantman AW, Scherrer G.
PMID: 28162807 | DOI: 10.1016/j.neuron.2017.01.008

Pain thresholds are, in part, set as a function of emotional and internal states by descending modulation of nociceptive transmission in the spinal cord. Neurons of the rostral ventromedial medulla (RVM) are thought to critically contribute to this process; however, the neural circuits and synaptic mechanisms by which distinct populations of RVM neurons facilitate or diminish pain remain elusive. Here we used in vivo opto/chemogenetic manipulations and trans-synaptic tracing of genetically identified dorsal horn and RVM neurons to uncover an RVM-spinal cord-primary afferent circuit controlling pain thresholds. Unexpectedly, we found that RVM GABAergic neurons facilitate mechanical pain by inhibiting dorsal horn enkephalinergic/GABAergic interneurons. We further demonstrate that these interneurons gate sensory inputs and control pain through temporally coordinated enkephalin- and GABA-mediated presynaptic inhibition of somatosensory neurons. Our results uncover a descending disynaptic inhibitory circuit that facilitates mechanical pain, is engaged during stress, and could be targeted to establish higher pain thresholds.

Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors

Neuron.

2017 Mar 22

Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S.
PMID: 28334609 | DOI: 10.1016/j.neuron.2017.02.034

Basolateral amygdala (BLA) principal cells are capable of driving and antagonizing behaviors of opposing valence. BLA neurons project to the central amygdala (CeA), which also participates in negative and positive behaviors. However, the CeA has primarily been studied as the site for negative behaviors, and the causal role for CeA circuits underlying appetitive behaviors is poorly understood. Here, we identify several genetically distinct populations of CeA neurons that mediate appetitive behaviors and dissect the BLA-to-CeA circuit for appetitive behaviors. Protein phosphatase 1 regulatory subunit 1B+ BLA pyramidal neurons to dopamine receptor 1+ CeA neurons define a pathway for promoting appetitive behaviors, while R-spondin 2+ BLA pyramidal neurons to dopamine receptor 2+ CeA neurons define a pathway for suppressing appetitive behaviors. These data reveal genetically defined neural circuits in the amygdala that promote and suppress appetitive behaviors analogous to the direct and indirect pathways of the basal ganglia.

Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain

Cell.

2018 Aug 09

Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M, Bortolin L, Wang S, Goeva A, Nemesh J, Kamitaki N, Brumbaugh S, Kulp D, McCarroll SA.
PMID: 30096299 | DOI: 10.1016/j.cell.2018.07.028

The mammalian brain is composed of diverse, specialized cell populations. To systematically ascertain and learn from these cellular specializations, we used Drop-seq to profile RNA expression in 690,000 individual cells sampled from 9 regions of the adult mouse brain. We identified 565 transcriptionally distinct groups of cells using computational approaches developed to distinguish biological from technical signals. Cross-region analysis of these 565 cell populations revealed features of brain organization, including a gene-expression module for synthesizing axonal and presynaptic components, patterns in the co-deployment of voltage-gated ion channels, functional distinctions among the cells of the vasculature and specialization of glutamatergic neurons across cortical regions. Systematic neuronal classifications for two complex basal ganglia nuclei and the striatum revealed a rare population of spiny projection neurons. This adult mouse brain cell atlas, accessible through interactive online software (DropViz), serves as a reference for development, disease, and evolution.

Pages

  • « first
  • ‹ previous
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?