ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Cancer research
2021 Nov 15
Lecker, LSM;Berlato, C;Maniati, E;Delaine-Smith, R;Pearce, OMT;Heath, O;Nichols, SJ;Trevisan, C;Novak, M;McDermott, J;Brenton, JD;Cutillas, PR;Rajeeve, V;Hennino, A;Drapkin, R;Loessner, D;Balkwill, FR;
PMID: 34561272 | DOI: 10.1158/0008-5472.CAN-21-0536
Cancer Immunology Research
2018 Mar 27
Wing A, Fajardo CA, Posey AD, Shaw C, Da T, Young R, Alemany R, June CH, Guedan S.
PMID: 29588319 | DOI: 10.1158/2326-6066.CIR-17-0314
T cells expressing chimeric antigen receptors (CART) have shown significant promise in clinical trials to treat hematologic malignancies, but their efficacy in solid tumors has been limited. Oncolytic viruses have the potential to act in synergy with immunotherapies due to their immunogenic oncolytic properties and the opportunity of incorporating therapeutic transgenes in their genomes. Here, we hypothesized that an oncolytic adenovirus armed with an EGFR-targeting, bispecific T-cell engager (OAd-BiTE) would improve the outcome of CART-cell therapy in solid tumors. We report that CART cells targeting the folate receptor alpha (FR-α) successfully infiltrated preestablished xenograft tumors but failed to induce complete responses, presumably due to the presence of antigen-negative cancer cells. We demonstrated that OAd-BiTE-mediated oncolysis significantly improved CART-cell activation and proliferation, while increasing cytokine production and cytotoxicity, and showed an in vitro favorable safety profile compared with EGFR-targeting CARTs. BiTEs secreted from infected cells redirected CART cells toward EGFR in the absence of FR-α, thereby addressing tumor heterogeneity. BiTE secretion also redirected CAR-negative, nonspecific T cells found in CART-cell preparations toward tumor cells. The combinatorial approach improved antitumor efficacy and prolonged survival in mouse models of cancer when compared with the monotherapies, and this was the result of an increased BiTE-mediated T-cell activation in tumors. Overall, these results demonstrated that the combination of a BiTE-expressing oncolytic virus with adoptive CART-cell therapy overcomes key limitations of CART cells and BiTEs as monotherapies in solid tumors and encourage its further evaluation in human trials.
Antiviral research
2021 Oct 27
Herschke, F;Li, C;Zhu, R;Han, Q;Wu, Q;Lu, Q;Barale-Thomas, E;De Jonghe, S;Lin, TI;De Creus, A;
PMID: 34718044 | DOI: 10.1016/j.antiviral.2021.105196
Viruses
2019 Mar 13
Maidji E, Moreno ME, Rivera JM, Joshi P, Galkina SA, Kosikova G, Somsouk M, Stoddart CA.
PMID: - | DOI: 10.3390/v11030256
Although antiretroviral therapy (ART) greatly suppresses HIV replication, lymphoid tissues remain a sanctuary site where the virus may replicate. Tracking the earliest steps of HIV spread from these cellular reservoirs after drug cessation is pivotal for elucidating how infection can be prevented. In this study, we developed an in vivo model of HIV persistence in which viral replication in the lymphoid compartments of humanized mice was inhibited by the HIV reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) to very low levels, which recapitulated ART-suppression in HIV-infected individuals. Using a combination of RNAscope in situ hybridization (ISH) and immunohistochemistry (IHC), we quantitatively investigated the distribution of HIV in the lymphoid tissues of humanized mice during active infection, EFdA suppression, and after drug cessation. The lymphoid compartments of EFdA-suppressed humanized mice harbored very rare transcription/translation-competent HIV reservoirs that enable viral rebound. Our data provided the visualization and direct measurement of the early steps of HIV reservoir expansion within anatomically intact lymphoid tissues soon after EFdA cessation and suggest a strategy to enhance therapeutic approaches aimed at eliminating the HIV reservoir.
Inflamm Bowel Dis. 2017 Nov;23(11):1950-1961.
2017 Nov 23
Shouval DS, Konnikova L, Griffith AE, Wall SM, Biswas A, Werner L, Nunberg M, Kammermeier J, Goettel JA, Anand R, Chen H, Weiss B, Li J, Loizides A, Yerushalmi B, Yanagi T, Beier R, Conklin LS, Ebens CL, Santos FGMS, Sherlock M, Goldsmith JD, Kotlarz D, Glover SC, Shah N, Bousvaros A, Uhlig HH, Muise AM, Klein C, Snapper SB.
PMID: 29023267 | DOI: 10.1097/MIB.0000000000001270
Kidney Medicine
2021 May 01
Melilli, E;Mussetti, A;Linares, G;Ruella, M;La Salette, C;Savchenko, A;Taco, M;Montero, N;Grinyo, J;Fava, A;Gomà, M;Meneghini, M;Manonelles, A;Cruzado, J;Sureda, A;Bestard, O;
| DOI: 10.1016/j.xkme.2021.03.011
Proceedings of the National Academy of Sciences of the United States of America
2022 Aug 09
Wang, Y;Feswick, A;Apostolou, V;Petkov, PM;Moser, EK;Tibbetts, SA;
PMID: 35921433 | DOI: 10.1073/pnas.2123362119
PLoS pathogens
2021 Dec 01
Broeckel, RM;Feldmann, F;McNally, KL;Chiramel, AI;Sturdevant, GL;Leung, JM;Hanley, PW;Lovaglio, J;Rosenke, R;Scott, DP;Saturday, G;Bouamr, F;Rasmussen, AL;Robertson, SJ;Best, SM;
PMID: 34855915 | DOI: 10.1371/journal.ppat.1009678
Journal for ImmunoTherapy of Cancer
2021 Nov 01
Jabado, O;Fan, L;Souza, P;Harris, A;Chaparro, A;Qutaish, M;Si, H;Dannenberg, J;Sasser, K;Couto, S;Fereshteh, M;
| DOI: 10.1136/jitc-2021-sitc2021.928
Gastroenterology
2016 Dec 01
Shouval DS, Biswas A, Kang YH, Griffith AE, Konnikova L, Mascanfroni ID, Redhu NS, Frei SM, Field M, Doty AL, Goldsmith JD, Bhan AK, Loizides A, Weiss B, Yerushalmi B, Yanagi T, Lui X, Quintana FJ, Muise AM, Klein C, Horwitz BH, Glover SC, Bousvaros A, Sn
PMID: 27693323 | DOI: 10.1053/j.gastro.2016.08.055
Interleukin 10 receptor (IL10R)-deficient mice develop spontaneous colitis and, similarly, patients with loss-of-function mutations in IL10R develop severe infant-onset inflammatory bowel disease. Loss of IL10R signaling in mouse and human macrophages is associated with increased production of interleukin 1β. We demonstrated that innate immune production of IL1β mediates colitis in IL10R-deficient mice. Transfer of Il1r1-/- CD4+ T cells into Rag1-/-/Il10rb-/- mice reduced the severity of their colitis (compared to mice that received CD4+ T cells that express IL1R), accompanied by decreased production of interferon gamma, tumor necrosis factor-α, and IL17A. In macrophages from mice without disruption of IL10R signaling or from healthy humans (controls), incubation with IL10 reduced canonical activation of the inflammasome and production of IL1β through transcriptional and post-translational regulation of NLRP3. Lipopolysaccharide and adenosine triphosphate stimulation of macrophages from Il10rb-/- mice or IL10R-deficient patients resulted in increased production of IL1β. Moreover, in human IL10R-deficient macrophages, lipopolysaccharide stimulation alone triggered IL1β secretion via non-canonical, caspase 8-dependent activation of the inflammasome. We treated 2 IL10R-deficient patients with severe and treatment-refractory infant-onset inflammatory bowel disease with the IL1-receptor antagonist anakinra. Both patients had marked clinical, endoscopic, and histologic responses after 4-7 weeks. This treatment served as successful bridge to allogeneic hematopoietic stem cell transplantation in 1 patient. Our findings indicate that loss of IL10 signaling leads to intestinal inflammation, at least in part, through increased production of IL1 by innate immune cells, leading to activation of CD4+ T cells. Agents that block IL1 signaling might be used to treat patients with inflammatory bowel disease resulting from IL10R deficiency.
Cell Rep.
2018 Jul 17
Nguyen A, Ho L, Workenhe ST, Chen L, Samson J, Walsh SR, Pol J, Bramson JL, Wan Y.
PMID: 30021162 | DOI: 10.1016/j.celrep.2018.06.040
Immune recognition of tumor-expressed antigens by cytotoxic CD8+ T cells is the foundation of adoptive T cell therapy (ACT) and has been shown to elicit significant tumor regression. However, therapy-induced selective pressure can sculpt the antigenicity of tumors, resulting in outgrowth of variants that lose the target antigen. We demonstrate that tumor relapse from ACT and subsequent oncolytic viral vaccination can be prevented using class I HDACi, MS-275. Drug delivery subverted the phenotype of tumor-infiltrating CD11b+ Ly6Chi Ly6G- myeloid cells, favoring NOS2/ROS secretion and pro-inflammatory genes characteristic of M1 polarization. Simultaneously, MS-275 abrogated the immunosuppressive function of tumor-infiltrating myeloid cells and reprogrammed them to eliminate antigen-negative tumor cells in a caspase-dependent manner. Elevated IFN-γ within the tumor microenvironment suggests that MS-275 modulates the local cytokine landscape to favor antitumor myeloid polarization through the IFN-γR/STAT1 signaling axis. Exploiting tumor-infiltrating myeloid cell plasticity thus complements T cell therapy in targeting tumor heterogeneity and immune escape.
Science advances
2021 Jun 01
Schiferle, EB;Cheon, SY;Ham, S;Son, HG;Messerschmidt, JL;Lawrence, DP;Cohen, JV;Flaherty, KT;Moon, JJ;Lian, CG;Sullivan, RJ;Demehri, S;
PMID: 34162549 | DOI: 10.1126/sciadv.abg4498
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com