Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (58)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • (-) Remove ZIKV filter ZIKV (46)
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (23) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Brown Assay (5) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope (3) Apply RNAscope filter
  • RNAscope Multiplex Fluorescent Assay (3) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (2) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (2) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (2) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • Infectious Disease (43) Apply Infectious Disease filter
  • Neuroscience (11) Apply Neuroscience filter
  • Cancer (7) Apply Cancer filter
  • Inflammation (7) Apply Inflammation filter
  • Infectious (4) Apply Infectious filter
  • Development (1) Apply Development filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Infectious Disease: Zika Virus (1) Apply Infectious Disease: Zika Virus filter
  • MicroRNAs (1) Apply MicroRNAs filter
  • Other: Immunology (1) Apply Other: Immunology filter
  • Zika (1) Apply Zika filter
  • Zika Virus (1) Apply Zika Virus filter

Category

  • Publications (58) Apply Publications filter
Zika virus has oncolytic activity against glioblastoma stem cells

Journal of Experimental Medicine

2017 Sep 05

Zhu Z, Gorman MJ, McKenzie LD, Chai JN, Hubert CG, Prager BC, Fernandez E, Richner JM, Zhang R, Shan C, Wang X, Shi PY, Diamond MS, Rich JN, Chheda MG.
PMID: 28874392 | DOI: 10.1084/jem.20171093

Glioblastoma is a highly lethal brain cancer that frequently recurs in proximity to the original resection cavity. We explored the use of oncolytic virus therapy against glioblastoma with Zika virus (ZIKV), a flavivirus that induces cell death and differentiation of neural precursor cells in the developing fetus. ZIKV preferentially infected and killed glioblastoma stem cells (GSCs) relative to differentiated tumor progeny or normal neuronal cells. The effects against GSCs were not a general property of neurotropic flaviviruses, as West Nile virus indiscriminately killed both tumor and normal neural cells. ZIKV potently depleted patient-derived GSCs grown in culture and in organoids. Moreover, mice with glioblastoma survived substantially longer and at greater rates when the tumor was inoculated with a mouse-adapted strain of ZIKV. Our results suggest that ZIKV is an oncolytic virus that can preferentially target GSCs; thus, genetically modified strains that further optimize safety could have therapeutic efficacy for adult glioblastoma patients.

928 A translational approach to catalog pancreatic cancer heterogeneity using spatial genomics in large patient cohorts for target validation and rational combination selection

Journal for ImmunoTherapy of Cancer

2021 Nov 01

Jabado, O;Fan, L;Souza, P;Harris, A;Chaparro, A;Qutaish, M;Si, H;Dannenberg, J;Sasser, K;Couto, S;Fereshteh, M;
| DOI: 10.1136/jitc-2021-sitc2021.928

BackgroundPancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with short overall survival; the standard of care (SoC) is chemotherapy. Immunotherapies in development aim to remodel the stroma by depleting immunosuppressive cell types or using T-cell redirection to kill tumor cells. To date, none of these methods have improved overall survival beyond SoC. Next generation immunotherapies that employ histopathology and molecular subtyping1 for target and patient selection may succeed. Here we leverage a spatial transcriptomics platform (Nanostring Digital Spatial Profiling, DSP) to reveal molecular signaling in tumoral and stromal cells in 57 PDAC patients using tumor microarrays (TMAs). This approach is rapid and clinically relevant as molecular and histology data can be easily bridged.MethodsTMAs generated from surgical resection tissue were commercially sourced. DSP was performed using the CTA RNA panel (1,800 target genes) using PanCK fluorescence for tumor/stroma segmentation. In parallel, slides were chromogenically stained for T-cells (CD3) and macrophages (CD68/CD163). Differential gene expression, gene signature and gene co-expression network analysis was performed using linear models in R.2 3ResultsDifferential gene expression analysis and correlation to IHC confirmed the DSP platform successfully profiled tumor and stromal compartments (figure 1). Immune cell signatures4 and pathway analysis revealed a heterogenous stromal environment. Using a fibroblast gene signature derived from single-cell RNAseq5 we found fibroblast density was positively correlated to PDGFR signaling and MHC-II expression but negatively correlated to B, CD4+ T and neutrophil cell levels (figure 2a). This finding supports the idea that atypical antigen presentation in cancer associated fibroblasts (CAFs) may be exploitable for immunotherapies.6 We constructed a co-expression network from in-situ stromal gene expression and used it to identify receptors coordinately expressed with the immunosuppressive macrophage marker CSF1R as a bispecific antibody partner (figure 2b).7 Classical macrophage markers were identified but also receptors with lesser-known functions in macrophages (TIM3/HAVCR2, FPR3, MS4A6A, LILRB4). Surveying target pairs in this method allows rapid, patient-specific confirmation in serial TMA sections with singleplex IHC or RNAscope.Abstact 928 Figure 1Segmentation strategy and validation of DSP (A) PanCK, CD68 and CD3 staining from two representative tumor cores; (B, C) correlation of gene transcripts in stroma to cell counts from chromogenic staining; (D) heatmap of selected genes differentially expressed in tumor and stroma (n=57 patients).Abstract 928 Figure 2Exploration of the stromal compartment in PDAC TMAs. (A) Heatmap of selected cell type and gene signatures from gene expression in the stroma, color represents single sample enrichment score using GSVA method; (B) a gene co-expression subnetwork in the stroma centered on CSF1R, edge thickness represents strength of correlation, green nodes have evidence for cell surface expression based on proteomic profiling.7ConclusionsIn this study we were able to recapitulate known PDAC biology using very small samples of primary tumors. The combination of TMAs and DSP enables a rapid validation of targets and hypothesis generation for bispecific parings. Further analysis of untreated (n=14) and post-adjuvant chemotherapy (n=26) patients using RNA DSP, IHC and bulk RNAseq is under way. Results from this cohort will enable an integrated histopathology and molecular approach to developing next-generation immunotherapies.ReferencesCollisson EA, Bailey P, Chang DK, Biankin AV. Molecular subtypes of pancreatic cancer. Nat Rev Gastroenterol Hepatol 2019 April;16(4):207-220.Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015). “limma powers differential expression analyses for RNA-sequencing and microarray studies.” Nucleic Acids Research 43(7):e47.Hänzelmann S, Castelo R, Guinney J (2013). “GSVA: gene set variation analysis for microarray and RNA-Seq data.” BMC Bioinformatics 14,7.Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 2017 January 3;18(1):248-262.Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, Genshaft AS, Hughes TK, Ziegler CG, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick DT, Jané-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 2016 April 8;352(6282):189-96.Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, Sivajothi S, Armstrong TD, Engle DD, Yu KH, Hao Y, Wolfgang CL, Park Y, Preall J, Jaffee EM, Califano A, Robson P, Tuveson DA. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov 2019 August;9(8):1102-1123. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C, Schiess R, Schmidt A, Mirkowska P, Härtlová A, Van Eyk JE, Bourquin JP, Aebersold R, Boheler KR, Zandstra P, Wollscheid B. A mass spectrometric-derived cell surface protein atlas. PLoS One 2015 April 20;10(3):e0121314.Ethics ApprovalSpecimens were harvested from unused tissue after a surgical tumor resection procedure. A discrete legal consent form from both hospital and individuals was obtained by the commercial tissue vendor BioMax US for all samples analyzed in this abstract. All human tissues are collected under HIPPA approved protocols.ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.
Interleukin 1b Mediates Intestinal Inflammation in Mice and Patients With Interleukin 10 Receptor Deficiency

Gastroenterology

2016 Dec 01

Shouval DS, Biswas A, Kang YH, Griffith AE, Konnikova L, Mascanfroni ID, Redhu NS, Frei SM, Field M, Doty AL, Goldsmith JD, Bhan AK, Loizides A, Weiss B, Yerushalmi B, Yanagi T, Lui X, Quintana FJ, Muise AM, Klein C, Horwitz BH, Glover SC, Bousvaros A, Sn
PMID: 27693323 | DOI: 10.1053/j.gastro.2016.08.055

Interleukin 10 receptor (IL10R)-deficient mice develop spontaneous colitis and, similarly, patients with loss-of-function mutations in IL10R develop severe infant-onset inflammatory bowel disease. Loss of IL10R signaling in mouse and human macrophages is associated with increased production of interleukin 1β. We demonstrated that innate immune production of IL1β mediates colitis in IL10R-deficient mice. Transfer of Il1r1-/- CD4+ T cells into Rag1-/-/Il10rb-/- mice reduced the severity of their colitis (compared to mice that received CD4+ T cells that express IL1R), accompanied by decreased production of interferon gamma, tumor necrosis factor-α, and IL17A. In macrophages from mice without disruption of IL10R signaling or from healthy humans (controls), incubation with IL10 reduced canonical activation of the inflammasome and production of IL1β through transcriptional and post-translational regulation of NLRP3. Lipopolysaccharide and adenosine triphosphate stimulation of macrophages from Il10rb-/- mice or IL10R-deficient patients resulted in increased production of IL1β. Moreover, in human IL10R-deficient macrophages, lipopolysaccharide stimulation alone triggered IL1β secretion via non-canonical, caspase 8-dependent activation of the inflammasome. We treated 2 IL10R-deficient patients with severe and treatment-refractory infant-onset inflammatory bowel disease with the IL1-receptor antagonist anakinra. Both patients had marked clinical, endoscopic, and histologic responses after 4-7 weeks. This treatment served as successful bridge to allogeneic hematopoietic stem cell transplantation in 1 patient. Our findings indicate that loss of IL10 signaling leads to intestinal inflammation, at least in part, through increased production of IL1 by innate immune cells, leading to activation of CD4+ T cells. Agents that block IL1 signaling might be used to treat patients with inflammatory bowel disease resulting from IL10R deficiency.

Zika virus induces neuronal and vascular degeneration in developing mouse retina

Acta neuropathologica communications

2021 May 25

Li, Y;Shi, S;Xia, F;Shan, C;Ha, Y;Zou, J;Adam, A;Zhang, M;Wang, T;Liu, H;Shi, PY;Zhang, W;
PMID: 34034828 | DOI: 10.1186/s40478-021-01195-6

Zika virus (ZIKV), a mosquito-borne flavivirus, can cause severe eye disease and even blindness in newborns. However, ZIKV-induced retinal lesions have not been studied in a comprehensive way, mechanisms of ZIKV-induced retinal abnormalities are unknown, and no therapeutic intervention is available to treat or minimize the degree of vision loss in patients. Here, we developed a novel mouse model of ZIKV infection to evaluate its impact on retinal structure. ZIKV (20 plaque-forming units) was inoculated into neonatal wild type C57BL/6J mice at postnatal day (P) 0 subcutaneously. Retinas of infected mice and age-matched controls were collected at various ages, and retinal structural alterations were analyzed. We found that ZIKV induced progressive neuronal and vascular damage and retinal inflammation starting from P8. ZIKV-infected retina exhibited dramatically decreased thickness with loss of neurons, initial neovascular tufts followed by vessel dilation and degeneration, increased microglia and leukocyte recruitment and activation, degeneration of astrocyte network and gliosis. The above changes may involve inflammation and endoplasmic reticulum stress-mediated cell apoptosis and necroptosis. Moreover, we evaluated the efficacy of preclinical drugs and the safety of ZIKV vaccine candidate in this mouse model. We found that ZIKV-induced retinal abnormalities could be blocked by a selective flavivirus inhibitor NITD008 and a live-attenuated ZIKV vaccine candidate could potentially induce retinal abnormalities. Overall, we established a novel mouse model and provide a direct causative link between ZIKV and retinal lesion in vivo, which warrants further investigation of the underlying mechanisms of ZIKV-induced retinopathy and the development of effective therapeutics.
Lineage-dependent differences in the disease progression of Zika virus infection in type-I interferon receptor knockout (A129) mice

PLoS Negl Trop Dis.

2017 Jul 03

Dowall SD, Graham VA, Rayner E, Hunter L, Atkinson B, Pearson G, Dennis M, Hewson R.
PMID: 28672028 | DOI: 10.1371/journal.pntd.0005704

Zika virus (ZIKV) falls into two lineages: African (ZIKVAF) and Asian (ZIKVAS). These lineages have not been tested comprehensively in parallel for disease progression using an animal model system. Here, using the established type-I interferon receptor knockout (A129) mouse model, it is first demonstrated that ZIKVAF causes lethal infection, with different kinetics of disease manifestations according to the challenge dose. Animals challenged with a low dose of 10 plaque-forming units (pfu) developed more neurological symptoms than those challenged with 5-log higher doses. By contrast, animals challenged with ZIKVAS displayed no clinical signs or mortality, even at doses of 106 pfu. However, viral RNA was detected in the tissues of animals infected with ZIKV strains from both lineages and similar histological changes were observed. The present study highlights strain specific virulence differences between the African and Asian lineages in a ZIKV mouse model.

Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease

Nat. Commun.

2018 Jun 20

Coffey LL, Keesler RI, Pesavento PA, Woolard K, Singapuri A, Watanabe J, Cruzen C, Christe KL, Usachenko J, Yee JA, Heng VA, Bliss-Moreau E, Reader JR, von Morgenland W, Gibbons AM, Jackson K, Ardeshir A, Heimsath H, Permar S, Senthamaraikannan P, Presicc
PMID: - | DOI: 10.1038/s41467-018-04777-6

Zika virus (ZIKV) infection of pregnant women can cause fetal microcephaly and other neurologic defects. We describe the development of a non-human primate model to better understand fetal pathogenesis. To reliably induce fetal infection at defined times, four pregnant rhesus macaques are inoculated intravenously and intraamniotically with ZIKV at gestational day (GD) 41, 50, 64, or 90, corresponding to first and second trimester of gestation. The GD41-inoculated animal, experiencing fetal death 7 days later, has high virus levels in fetal and placental tissues, implicating ZIKV as cause of death. The other three fetuses are carried to near term and euthanized; while none display gross microcephaly, all show ZIKV RNA in many tissues, especially in the brain, which exhibits calcifications and reduced neural precursor cells. Given that this model consistently recapitulates neurologic defects of human congenital Zika syndrome, it is highly relevant to unravel determinants of fetal neuropathogenesis and to explore interventions.

HDACi Delivery Reprograms Tumor-Infiltrating Myeloid Cells to Eliminate Antigen-Loss Variants

Cell Rep.

2018 Jul 17

Nguyen A, Ho L, Workenhe ST, Chen L, Samson J, Walsh SR, Pol J, Bramson JL, Wan Y.
PMID: 30021162 | DOI: 10.1016/j.celrep.2018.06.040

Immune recognition of tumor-expressed antigens by cytotoxic CD8+ T cells is the foundation of adoptive T cell therapy (ACT) and has been shown to elicit significant tumor regression. However, therapy-induced selective pressure can sculpt the antigenicity of tumors, resulting in outgrowth of variants that lose the target antigen. We demonstrate that tumor relapse from ACT and subsequent oncolytic viral vaccination can be prevented using class I HDACi, MS-275. Drug delivery subverted the phenotype of tumor-infiltrating CD11b+ Ly6Chi Ly6G- myeloid cells, favoring NOS2/ROS secretion and pro-inflammatory genes characteristic of M1 polarization. Simultaneously, MS-275 abrogated the immunosuppressive function of tumor-infiltrating myeloid cells and reprogrammed them to eliminate antigen-negative tumor cells in a caspase-dependent manner. Elevated IFN-γ within the tumor microenvironment suggests that MS-275 modulates the local cytokine landscape to favor antitumor myeloid polarization through the IFN-γR/STAT1 signaling axis. Exploiting tumor-infiltrating myeloid cell plasticity thus complements T cell therapy in targeting tumor heterogeneity and immune escape.

Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice.

Nature.

2016 Nov 07

Sapparapu G, Fernandez E, Kose N, Cao B, Fox JM, Bombardi RG, Zhao H, Nelson CA, Bryan AL, Barnes T, Davidson E, Mysorekar IU, Fremont DH, Doranz BJ, Diamond MS, Crowe JE.
PMID: 27819683 | DOI: 10.1038/nature20564

Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that can cause severe disease, including congenital birth defects during pregnancy1. To develop candidate therapeutic agents against ZIKV, we isolated a panel of human monoclonal antibodies (mAbs) from subjects with prior ZIKV infection. A subset of mAbs recognized diverse epitopes on the envelope (E) protein and exhibited potently neutralizing activity. One of the most inhibitory mAbs, ZIKV-117, broadly neutralized infection of ZIKV strains corresponding to African, Asian, and American lineages. Epitope mapping studies revealed that ZIKV-117 recognized a unique quaternary epitope on the E protein dimer-dimer interface. We evaluated the therapeutic efficacy of ZIKV-117 in pregnant and non-pregnant mice. mAb treatment markedly reduced tissue pathology, placental and fetal infection, and mortality in mice. Thus, neutralizing human mAbs can protect against maternal-fetal transmission, infection and disease, and reveal important determinants for structure-based rational vaccine design efforts.

Rejection of benign melanocytic nevi by nevus-resident CD4+ T cells

Science advances

2021 Jun 01

Schiferle, EB;Cheon, SY;Ham, S;Son, HG;Messerschmidt, JL;Lawrence, DP;Cohen, JV;Flaherty, KT;Moon, JJ;Lian, CG;Sullivan, RJ;Demehri, S;
PMID: 34162549 | DOI: 10.1126/sciadv.abg4498

Melanoma and melanocytic nevi harbor shared lineage-specific antigens and oncogenic mutations. Yet, the relationship between the immune system and melanocytic nevi is unclear. Using a patient-derived xenograft (PDX) model, we found that 81.8% of the transplanted nevi underwent spontaneous regression, while peripheral skin remained intact. Nevus-resident CD4+ T helper 1 cells, which exhibited a massive clonal expansion to melanocyte-specific antigens, were responsible for nevus rejection. Boosting regulatory T cell suppressive function with low-dose exogenous human interleukin-2 injection or treatment with a human leukocyte antigen (HLA) class II-blocking antibody prevented nevus rejection. Notably, mice with rejected nevus PDXs were protected from melanoma tumor growth. We detected a parallel CD4+ T cell-dominant immunity in clinically regressing melanocytic nevi. These findings reveal a mechanistic explanation for spontaneous nevus regression in humans and posit the activation of nevus-resident CD4+ effector T cells as a novel strategy for melanoma immunoprevention and treatment.
Neuropathogenesis of Zika Virus in a Highly Susceptible Immunocompetent Mouse Model after Antibody Blockade of Type I Interferon

PLoS Negl Trop Dis.

2017 Jan 09

Smith DR, Hollidge B, Daye S, Zeng X, Blancett C, Kuszpit K, Bocan T, Koehler JW, Coyne S, Minogue T, Kenny T, Chi X, Yim S, Miller L, Schmaljohn C, Bavari S, Golden JW.
PMID: 28068342 | DOI: 10.1371/journal.pntd.0005296

Animal models are needed to better understand the pathogenic mechanisms of Zika virus (ZIKV) and to evaluate candidate medical countermeasures. Adult mice infected with ZIKV develop a transient viremia, but do not demonstrate signs of morbidity or mortality. Mice deficient in type I or a combination of type I and type II interferon (IFN) responses are highly susceptible to ZIKV infection; however, the absence of a competent immune system limits their usefulness for studying medical countermeasures. Here we employ a murine model for ZIKV using wild-type C57BL/6 mice treated with an antibody to disrupt type I IFN signaling to study ZIKV pathogenesis. We observed 40% mortality in antibody treated mice exposed to ZIKV subcutaneously whereas mice exposed by intraperitoneal inoculation were highlysusceptible incurring 100% mortality. Mice infected by both exposure routes experienced weight loss, high viremia, and severe neuropathologic changes. The most significant histopathological findings occurred in the central nervous system where lesions represent an acute to subacute encephalitis/encephalomyelitis that is characterized by neuronal death, astrogliosis, microgliosis, scattered necrotic cellular debris, and inflammatory cell infiltrates. This model of ZIKV pathogenesis will be valuable for evaluating medical countermeasures and the pathogenic mechanisms of ZIKV because it allows immune responses to be elicited in immunologically competent mice with IFN I blockade only induced at the time of infection.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?