ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Viruses
2019 Mar 13
Maidji E, Moreno ME, Rivera JM, Joshi P, Galkina SA, Kosikova G, Somsouk M, Stoddart CA.
PMID: - | DOI: 10.3390/v11030256
Although antiretroviral therapy (ART) greatly suppresses HIV replication, lymphoid tissues remain a sanctuary site where the virus may replicate. Tracking the earliest steps of HIV spread from these cellular reservoirs after drug cessation is pivotal for elucidating how infection can be prevented. In this study, we developed an in vivo model of HIV persistence in which viral replication in the lymphoid compartments of humanized mice was inhibited by the HIV reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) to very low levels, which recapitulated ART-suppression in HIV-infected individuals. Using a combination of RNAscope in situ hybridization (ISH) and immunohistochemistry (IHC), we quantitatively investigated the distribution of HIV in the lymphoid tissues of humanized mice during active infection, EFdA suppression, and after drug cessation. The lymphoid compartments of EFdA-suppressed humanized mice harbored very rare transcription/translation-competent HIV reservoirs that enable viral rebound. Our data provided the visualization and direct measurement of the early steps of HIV reservoir expansion within anatomically intact lymphoid tissues soon after EFdA cessation and suggest a strategy to enhance therapeutic approaches aimed at eliminating the HIV reservoir.
Nature communications
2022 Dec 03
Yan, JJ;Ding, XJ;He, T;Chen, AX;Zhang, W;Yu, ZX;Cheng, XY;Wei, CY;Hu, QD;Liu, XY;Zhang, YL;He, M;Xie, ZY;Zha, X;Xu, C;Cao, P;Li, H;Xu, XH;
PMID: 36463200 | DOI: 10.1038/s41467-022-35211-7
Mod Pathol.
2018 Sep 26
Stolnicu S, Hoang L, Hanko-Bauer O, Barsan I, Terinte C, Pesci A, Aviel-Ronen S, Kiyokawa T, Alvarado-Cabrero I, Oliva E, Park KJ, Soslow RA.
PMID: 30258209 | DOI: 10.1038/s41379-018-0123-6
Although 2014 World Health Organization criteria require unequivocal glandular and squamous differentiation for a diagnosis of cervical adenosquamous carcinoma, in practice, adenosquamous carcinoma diagnoses are often made in tumors that lack unequivocal squamous and/or glandular differentiation. Considering the ambiguous etiologic, morphological, and clinical features and outcomes associated with adenosquamous carcinomas, we sought to redefine these tumors. We reviewed slides from 59 initially diagnosed adenosquamous carcinomas (including glassy cell carcinoma and related lesions) to confirm an adenosquamous carcinoma diagnosis only in the presence of unequivocal malignant glandular and squamous differentiation. Select cases underwent immunohistochemical profiling as well as human papillomavirus (HPV) testing by in situ hybridization. Of the 59 cases originally classified as adenosquamous carcinomas, 34 retained their adenosquamous carcinoma diagnosis, 9 were reclassified as pure invasive stratified mucin-producing carcinomas, 10 as invasive stratified mucin-producing carcinomas with other components (such as HPV-associated mucinous, usual-type, or adenosquamous carcinomas), and 4 as HPV-associated usual or mucinous adenocarcinomas with benign-appearing squamous metaplasia. Two glassy cell carcinomas were reclassified as poorly differentiated usual-type carcinomas based on morphology and immunophenotype. There were significant immunophenotypic differences between adenosquamous carcinomas and pure invasive stratified mucin-producing carcinomas with regard to HPV (p < 0.0001), PAX8 (p = 0.038; more in adenosquamous carcinoma), p40 (p < 0.0001; more in adenosquamous carcinoma), p63 (p = 0.0018; more in adenosquamous carcinoma) and MUC6 (p < 0.0001; less in adenosquamous carcinoma), HNF-1beta (p = 0.0023), vimentin (p = 0.0003), p53 (p = 0.0004), and CK7 (p = 0.0002) expression. Survival outcomes were similar between all groups. Adenosquamous carcinomas should be diagnosed only in the presence of unequivocal malignant glandular and squamous differentiation. The two putative glassy cell carcinomas studied did not meet our criteria for adenosquamous carcinoma, and categorizing them as such should be reconsidered.
Brain research bulletin
2023 Jun 20
Sun, L;Zhu, M;Wang, M;Hao, Y;Hao, Y;Jing, X;Yu, H;Shi, Y;Zhang, X;Wang, S;Yuan, F;Yuan, XS;
PMID: 37348822 | DOI: 10.1016/j.brainresbull.2023.110693
Inflamm Bowel Dis. 2017 Nov;23(11):1950-1961.
2017 Nov 23
Shouval DS, Konnikova L, Griffith AE, Wall SM, Biswas A, Werner L, Nunberg M, Kammermeier J, Goettel JA, Anand R, Chen H, Weiss B, Li J, Loizides A, Yerushalmi B, Yanagi T, Beier R, Conklin LS, Ebens CL, Santos FGMS, Sherlock M, Goldsmith JD, Kotlarz D, Glover SC, Shah N, Bousvaros A, Uhlig HH, Muise AM, Klein C, Snapper SB.
PMID: 29023267 | DOI: 10.1097/MIB.0000000000001270
Science translational medicine
2022 Dec 07
Tang, YL;Liu, AL;Lv, SS;Zhou, ZR;Cao, H;Weng, SJ;Zhang, YQ;
PMID: 36475906 | DOI: 10.1126/scitranslmed.abq6474
Nat Neurosci.
2017 Jan 23
Grienberger C, Milstein AD, Bittner KC, Romani S, Magee JC.
PMID: 28114296 | DOI: 10.1038/nn.4486
Place cells in the CA1 region of the hippocampus express location-specific firing despite receiving a steady barrage of heterogeneously tuned excitatory inputs that should compromise output dynamic range and timing. We examined the role of synaptic inhibition in countering the deleterious effects of off-target excitation. Intracellular recordings in behaving mice demonstrate that bimodal excitation drives place cells, while unimodal excitation drives weaker or no spatial tuning in interneurons. Optogenetic hyperpolarization of interneurons had spatially uniform effects on place cell membrane potential dynamics, substantially reducing spatial selectivity. These data and a computational model suggest that spatially uniform inhibitory conductance enhances rate coding in place cells by suppressing out-of-field excitation and by limiting dendritic amplification. Similarly, we observed that inhibitory suppression of phasic noise generated by out-of-field excitation enhances temporal coding by expanding the range of theta phase precession. Thus, spatially uniform inhibition allows proficient and flexible coding in hippocampal CA1 by suppressing heterogeneously tuned excitation.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
2022 Dec 16
Xie, L;Wu, H;Chen, Q;Xu, F;Li, H;Xu, Q;Jiao, C;Sun, L;Ullah, R;Chen, X;
PMID: 36526697 | DOI: 10.1038/s41386-022-01520-0
Development (Cambridge, England)
2022 Nov 28
Kong, X;Shu, X;Wang, J;Liu, D;Ni, Y;Zhao, W;Wang, L;Gao, Z;Chen, J;Yang, B;Guo, X;Wang, Z;
PMID: 36440598 | DOI: 10.1242/dev.201286
Kidney Medicine
2021 May 01
Melilli, E;Mussetti, A;Linares, G;Ruella, M;La Salette, C;Savchenko, A;Taco, M;Montero, N;Grinyo, J;Fava, A;Gomà, M;Meneghini, M;Manonelles, A;Cruzado, J;Sureda, A;Bestard, O;
| DOI: 10.1016/j.xkme.2021.03.011
Curr Biol.
2017 Jul 01
Sharpe MJ, Marchant NJ, Whitaker LR, Richie CT, Zhang YJ, Campbell EJ, Koivula PP, Necarsulmer JC, Mejias-Aponte C, Morales M, Pickel J, Smith JC, Niv Y, Shaham Y, Harvey BK, Schoenbaum G.
PMID: 28690111 | DOI: 10.1016/j.cub.2017.06.024
Eating is a learned process. Our desires for specific foods arise through experience. Both electrical stimulation and optogenetic studies have shown that increased activity in the lateral hypothalamus (LH) promotes feeding. Current dogma is that these effects reflect a role for LH neurons in the control of the core motivation to feed, and their activity comes under control of forebrain regions to elicit learned food-motivated behaviors. However, these effects could also reflect the storage of associative information about the cues leading to food in LH itself. Here, we present data from several studies that are consistent with a role for LH in learning. In the first experiment, we use a novel GAD-Cre rat to show that optogenetic inhibition of LH γ-aminobutyric acid (GABA) neurons restricted to cue presentation disrupts the rats' ability to learn that a cue predicts food without affecting subsequent food consumption. In the second experiment, we show that this manipulation also disrupts the ability of a cue to promote food seeking after learning. Finally, we show that inhibition of the terminals of the LH GABA neurons in ventral-tegmental area (VTA) facilitates learning about reward-paired cues. These results suggest that the LH GABA neurons are critical for storing and later disseminating information about reward-predictive cues.
JNeurosci
2017 Oct 23
Sottile SY, Hackett TA, Cai R, Ling L, Llano DA, Caspary DM.
PMID: 29061702 | DOI: 10.1523/JNEUROSCI.1795-17.2017
Acetylcholine is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons following activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear negatively affected by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal.Significance StatementThe pedunculopontine tegmental nucleus (PPTg) is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system which controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body; MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely selectively increasing gain and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may negatively impact speech understanding in the elderly population.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com