Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (5)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • HPV E6/E7 (68) Apply HPV E6/E7 filter
  • HPV (18) Apply HPV filter
  • HPV-HR18 (14) Apply HPV-HR18 filter
  • TBD (12) Apply TBD filter
  • HPV18 (6) Apply HPV18 filter
  • 18 (5) Apply 18 filter
  • 31 (5) Apply 31 filter
  • HPV16 (4) Apply HPV16 filter
  • HPV16/18 (4) Apply HPV16/18 filter
  • MmuPV1 (4) Apply MmuPV1 filter
  • HPV-HR16 (4) Apply HPV-HR16 filter
  • HPV HR18 (4) Apply HPV HR18 filter
  • (-) Remove HPV E6 / E7 filter HPV E6 / E7 (4)
  • 33 (4) Apply 33 filter
  • 35 (4) Apply 35 filter
  • 39 (4) Apply 39 filter
  • 45 (4) Apply 45 filter
  • 51 (4) Apply 51 filter
  • 52 (4) Apply 52 filter
  • 56 (4) Apply 56 filter
  • 58 (4) Apply 58 filter
  • 59 (4) Apply 59 filter
  • HPV HR7 (3) Apply HPV HR7 filter
  • E7 (3) Apply E7 filter
  • 26 (3) Apply 26 filter
  • E6/E7 (3) Apply E6/E7 filter
  • HPV 16 (3) Apply HPV 16 filter
  • 53 (3) Apply 53 filter
  • 66 (3) Apply 66 filter
  • 68 (3) Apply 68 filter
  • 73 (3) Apply 73 filter
  • 82 (3) Apply 82 filter
  • HPV16 E6/E7 (2) Apply HPV16 E6/E7 filter
  • HPV- E6 / E7 (2) Apply HPV- E6 / E7 filter
  • HR-HPV (2) Apply HR-HPV filter
  • Wnt16 (1) Apply Wnt16 filter
  • Axin2 (1) Apply Axin2 filter
  • EBV (1) Apply EBV filter
  • HPV31 (1) Apply HPV31 filter
  • HPV33 (1) Apply HPV33 filter
  • HPV35 (1) Apply HPV35 filter
  • HPV52 (1) Apply HPV52 filter
  • HPV58 (1) Apply HPV58 filter
  • HPV-HR7 (1) Apply HPV-HR7 filter
  • CPV16-E6/E7 (1) Apply CPV16-E6/E7 filter
  • E6 (1) Apply E6 filter
  • HER2 (1) Apply HER2 filter
  • (-) Remove Cd207 filter Cd207 (1)
  • Krt10 (1) Apply Krt10 filter
  • Fabp5 (1) Apply Fabp5 filter

Product

  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (2) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope Multiplex Fluorescent Assay (1) Apply RNAscope Multiplex Fluorescent Assay filter

Research area

  • (-) Remove HPV filter HPV (5)
  • Cancer (3) Apply Cancer filter
  • Bone (1) Apply Bone filter

Category

  • Publications (5) Apply Publications filter
Liprin-α1 Expression in Tumor-Infiltrating Lymphocytes Associates with Improved Survival in Patients with HPV-Positive Oropharyngeal Squamous Cell Carcinoma

Head and neck pathology

2023 Jun 19

Sjöblom, A;Pehkonen, H;Jouhi, L;Monni, O;Randén-Brady, R;Karhemo, PR;Tarkkanen, J;Haglund, C;Mattila, P;Mäkitie, A;Hagström, J;Carpén, T;
PMID: 37335526 | DOI: 10.1007/s12105-023-01565-7

Liprin-α1 is a scaffold protein involved in cell adhesion, motility, and invasion in malignancies. Liprin-α1 inhibits the expression of metastatic suppressor CD82 in cancers such as oral carcinoma, and the expression of these proteins has been known to correlate negatively. The role of these proteins has not been previously studied in human papillomavirus (HPV)-related head and neck cancers. Our aim was to assess the clinical and prognostic role of liprin-α1 and CD82 in HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) in comparison to HPV-negative OPSCC.The data included 139 OPSCC patients treated at the Helsinki University Hospital (HUS) during 2012-2016. Immunohistochemistry was utilized in HPV determination and in biomarker assays. Overall survival (OS) was used in the survival analysis.Stronger expression of liprin-α1 in tumor-infiltrating lymphocytes (TILs) was linked to lower cancer stage (p < 0.001) and HPV positivity (p < 0.001). Additionally, we found an association between elevated expression of liprin-α1 and weak expression of CD82 in tumor cells (p = 0.029). In survival analysis, we found significant correlation between favorable OS and stronger expression of liprin-α1 in TILs among the whole patient cohort (p < 0.001) and among HPV-positive patients (p = 0.042).Increased liprin-α1 expression in the TILs is associated with favorable prognosis in OPSCC, especially among HPV-positive patients.
A Model of Impaired Langerhans Cell Maturation Associated With HPV Induced Epithelial Hyperplasia

SSRN Electronic Journal

2021 Jul 29

Tuong, Z;Lukowski, S;Nguyen, Q;Chandra, J;Zhou, C;Gillinder, K;Bashaw, A;Ferdinand, J;Stewart, B;Teoh, S;Hanson, S;Devitt, K;Clatworthy, M;Powell, J;Frazer, I;
| DOI: 10.2139/ssrn.3889711

Langerhans cells (LC) are skin-resident antigen-presenting cells that regulate immune responses to epithelial commensal and pathogenic microorganisms. Infection of skin by human papillomavirus (HPV) is commonly persistant and can promote malignant epithelial transformation. As LCs are considered important in control of HPV infection, we compared the transcriptome of LCs from skin transformed by the oncogenic E7 protein of HPV16 and from healthy skin. We identified transcriptome heterogeneity at the single cell level amongst LCs in normal mouse skin, associated with cell ontogeny, cell cycle activity, and maturation. We identified a balanced co-existence of immune-stimulatory and immune-inhibitory LC cell states in normal skin that was signficantly disturbed in HPV16 E7-expressing hyperproliferative murine skin. Hyperplastic skin was depleted of immune-stimulatory LCs, and enriched for LCs with an immune-inhibitory gene signature, and LC-keratinocyte cross-talk was dysregulated. We identified reduced expression of the CSF1R ligand interleukin (IL)-34, a critical molecule for LC homeostasis. Enrichment of an immune-inhibitory LC gene signature and reduced levels of epithelial IL-34 were also found in human HPV-associated cervical epithelial cancers. HPV16 E7 transgenic hyperplastic murine skin thus provides a robust model to investigate interventions to overcome impaired LC maturation induced by epithelial proliferation in HPV associated cancer.
High-risk HPV-related squamous cell carcinoma in the temporal bone: a rare but noteworthy subtype

Virchows Archiv : an international journal of pathology

2023 Jan 27

Hongo, T;Yamamoto, H;Kuga, R;Komune, N;Miyazaki, M;Tsuchihashi, NA;Noda, T;Matsumoto, N;Oda, Y;Nakagawa, T;
PMID: 36705751 | DOI: 10.1007/s00428-023-03497-7

High-risk human papillomavirus (HPV) is a risk factor for the development of several head and neck squamous cell carcinomas (SCCs). However, there have been few reports of high-risk HPV infection in temporal bone squamous cell carcinomas (TBSCCs), and thus the prevalence and clinicopathologic significance of high-risk HPV in TBSCCs are still unclear. We retrospectively collected 131 TBSCCs and analyzed them for transcriptionally active high-risk HPV infection using messenger RNA in situ hybridization; we also assessed the utility of p16-immunohistochemistry (IHC) and Rb-IHC to predict HPV infection. Eighteen (13.7%) of the 131 TBSCCs were positive for p16-IHC, and five of them were positive for high-risk HPV infection (the estimated high-risk HPV positivity rate was 3.8% [5/131]). Interestingly, all five HPV-positive patients were male and had TBSCC on the right side. In the p16-IHC+/HPV+ cases (n = 5), the Rb-IHC showed a partial loss pattern (n = 4) or complete loss pattern (n = 1). In contrast, all p16-IHC-negative cases (n = 113) showed an Rb-IHC preserved pattern. The positive predictive value (PPV) of p16-IHC positivity for high-risk HPV infection was low at 27.8%, while the combination of p16-IHC+/Rb-IHC partial loss pattern showed excellent reliability with a PPV of 100%. The prognostic significance of high-risk HPV infection remained unclear. High-risk HPV-related TBSCC is an extremely rare but noteworthy subtype.
Abnormal p53 Immunohistochemical Patterns Shed Light on the Aggressiveness of Oral Epithelial Dysplasia

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc

2023 Mar 09

Novack, R;Zhang, L;Hoang, LN;Kadhim, M;Ng, TL;Poh, CF;Kevin Ko, YC;
PMID: 36906072 | DOI: 10.1016/j.modpat.2023.100153

The diagnosis of oral epithelial dysplasia is based on the degree of architectural and cytologic atypia in the squamous epithelium. The conventional grading system of mild, moderate, and severe dysplasia is considered by many the gold standard in predicting the risk of malignant transformation. Unfortunately, some low-grade lesions, with or without dysplasia, progress to squamous cell carcinoma (SCC) in short periods. As a result, we are proposing a new approach to characterize oral dysplastic lesions that will help identify lesions at high risk for malignant transformation. We included a total of 203 cases of oral epithelial dysplasia, proliferative verrucous leukoplakia, lichenoid, and commonly observed mucosal reactive lesions to evaluate their p53 immunohistochemical (IHC) staining patterns. We identified 4 wild-type patterns, including scattered basal, patchy basal/parabasal, null-like/basal sparing, mid-epithelial/basal sparing, and 3 abnormal p53 patterns, including overexpression basal/parabasal only, overexpression basal/parabasal to diffuse, and null. All cases of lichenoid and reactive lesions exhibited scattered basal or patchy basal/parabasal patterns, whereas human papillomavirus-associated oral epithelial dysplasia demonstrated null-like/basal sparing or mid-epithelial/basal sparing patterns. Of the oral epithelial dysplasia cases, 42.5% (51/120) demonstrated an abnormal p53 IHC pattern. p53 abnormal oral epithelial dysplasia was significantly more likely to progress to invasive SCC when compared with p53 wild-type oral epithelial dysplasia (21.6% vs 0%, P < .0001). Furthermore, p53 abnormal oral epithelial dysplasia was more likely to have dyskeratosis and/or acantholysis (98.0% vs 43.5%, P < .0001). We propose the term p53 abnormal oral epithelial dysplasia to highlight the importance of utilizing p53 IHC stain to recognize lesions that are at high risk of progression to invasive disease, irrespective of the histologic grade, and propose that these lesions should not be graded using the conventional grading system to avoid delayed management.
Sinonasal Adenosquamous Carcinoma- Morphology and Genetic Drivers Including Low- and High-Risk Human Papillomavirus mRNA, DEK::AFF2 Fusion, and MAML2 Rearrangement

Head and neck pathology

2023 Feb 28

Holliday, D;Mehrad, M;Ely, KA;Tong, F;Wang, X;Hang, JF;Kuo, YJ;Velez-Torres, JM;Lott-Limbach, A;Lewis, JS;
PMID: 36849671 | DOI: 10.1007/s12105-023-01538-w

Sinonasal adenosquamous carcinoma is rare, and there are almost no studies detailing morphology or characterizing their genetic driver events. Further, many authors have termed sinonasal tumors with combined squamous carcinoma and glands as mucoepidermoid carcinoma but none have analyzed for the presence of MAML2 rearrangement.Cases from 2014 to 2020 were collected and diagnosed using World Health Organization criteria. They were tested for p16 expression by immunohistochemistry (70% cut-off), DEK::AFF2 fusion by fluorescence in situ hybridization (FISH) and AFF2 immunohistochemistry, MAML2 rearrangement by FISH, and low- and high-risk HPV by RNA ISH and reverse transcription PCR, respectively. Detailed morphology and clinical features were reviewed.There were 7 male (64%) and 4 female (36%) patients with a median age of 69 years, most Caucasian (10 of 11 or 91%). Most had tobacco exposure (8/11, 73%) and most presented with epistaxis, a visible nasal mass, and/or facial pain. Several had a precursor papillomas (3 of 11, 27%). The squamous component had variable keratinization, 5 of 11 (46%) of which would be described as keratinizing, 3 non-keratinizing, and 2 with mixed features. All had gland formation, by definition, and 2 of 11 (18%) had ciliated tumor cells. None of the 11 cases had MAML2 rearrangement and one had DEK::AFF2 fusion with associated positive nuclear AFF2 protein immunostaining. Most were p16 positive (7 of 11, 64%) and all 7 of these were hrHPV positive either by RNA ISH or RT-PCR. Two of the p16-negative tumors were positive for lrHPV by RNA ISH. Treatment included surgery alone (4 of 11, 36%), surgery with adjuvant radiation (5 of 11, 45%), and surgery with radiation and chemotherapy (2 of 11, 18%). Four of 11 patients (36%) suffered disease recurrence, two requiring re-operation and who were disease free at last follow-up, one receiving additional chemotherapy and who was alive with disease. The other elected to undergo palliative therapy and died of disease.Sinonasal adenosquamous carcinoma is a somewhat heterogeneous tumor not infrequently arising ex papilloma and having various drivers including high- and low-risk HPV and rarely DEK::AFF2 fusion. The prognosis appears favorable when proper treatment is possible.
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?