Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (12)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (32) Apply TBD filter
  • SARS-CoV-2 (11) Apply SARS-CoV-2 filter
  • Ifng (10) Apply Ifng filter
  • Lgr5 (8) Apply Lgr5 filter
  • Il-6 (8) Apply Il-6 filter
  • (-) Remove V-nCoV2019-S filter V-nCoV2019-S (7)
  • COL1A1 (6) Apply COL1A1 filter
  • (-) Remove Ccl2 filter Ccl2 (6)
  • IL1B (6) Apply IL1B filter
  • CD68 (5) Apply CD68 filter
  • IL12B (5) Apply IL12B filter
  • Tnf (5) Apply Tnf filter
  • GFAP (5) Apply GFAP filter
  • IL6 (5) Apply IL6 filter
  • LCN2 (5) Apply LCN2 filter
  • IL-10 (5) Apply IL-10 filter
  • SIV (5) Apply SIV filter
  • IL-1β (5) Apply IL-1β filter
  • CCR2 (4) Apply CCR2 filter
  • IL17A (4) Apply IL17A filter
  • C1qa (4) Apply C1qa filter
  • Il10 (4) Apply Il10 filter
  • CXCL10 (4) Apply CXCL10 filter
  • Foxp3 (4) Apply Foxp3 filter
  • IL13 (4) Apply IL13 filter
  • TLR4 (4) Apply TLR4 filter
  • Cxcl1 (4) Apply Cxcl1 filter
  • Aif1 (4) Apply Aif1 filter
  • HIV (4) Apply HIV filter
  • NLRP3 (4) Apply NLRP3 filter
  • IL-8 (4) Apply IL-8 filter
  • Ackr2 (4) Apply Ackr2 filter
  • TNFA (4) Apply TNFA filter
  • CD3 (4) Apply CD3 filter
  • ACTA2 (3) Apply ACTA2 filter
  • Rbfox3 (3) Apply Rbfox3 filter
  • ARG1 (3) Apply ARG1 filter
  • Cd8a (3) Apply Cd8a filter
  • CD34 (3) Apply CD34 filter
  • CD4 (3) Apply CD4 filter
  • Wnt5a (3) Apply Wnt5a filter
  • IL18 (3) Apply IL18 filter
  • IL4 (3) Apply IL4 filter
  • PECAM1 (3) Apply PECAM1 filter
  • PDGFRB (3) Apply PDGFRB filter
  • Cd163 (3) Apply Cd163 filter
  • Apoe (3) Apply Apoe filter
  • Emr1 (3) Apply Emr1 filter
  • POSTN (3) Apply POSTN filter
  • Gpr55 (3) Apply Gpr55 filter

Product

  • RNAscope 2.5 HD Red assay (3) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Multiplex Fluorescent Assay (3) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • RNAscope Fluorescent Multiplex Assay (1) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter

Research area

  • (-) Remove Inflammation filter Inflammation (12)
  • Covid (7) Apply Covid filter
  • Cancer (2) Apply Cancer filter
  • Infectious (2) Apply Infectious filter
  • Neuroscience (2) Apply Neuroscience filter

Category

  • Publications (12) Apply Publications filter
Dichotomous Roles of Smooth Muscle Cell-Derived MCP1 (Monocyte Chemoattractant Protein 1) in Development of Atherosclerosis

Arteriosclerosis, thrombosis, and vascular biology

2022 Jun 23

Owsiany, KM;Deaton, RA;Soohoo, KG;Tram Nguyen, A;Owens, GK;
PMID: 35735018 | DOI: 10.1161/ATVBAHA.122.317882

Smooth muscle cells (SMCs) in atherosclerotic plaque take on multiple nonclassical phenotypes that may affect plaque stability and, therefore, the likelihood of myocardial infarction or stroke. However, the mechanisms by which these cells affect stability are only beginning to be explored.In this study, we investigated the contribution of inflammatory MCP1 (monocyte chemoattractant protein 1) produced by both classical Myh11 (myosin heavy chain 11)+ SMCs and SMCs that have transitioned through an Lgals3 (galectin 3)+ state in atherosclerosis using smooth muscle lineage tracing mice that label all Myh11+ cells and a dual lineage tracing system that targets Lgals3-transitioned SMC only.We show that loss of MCP1 in all Myh11+ smooth muscle results in a paradoxical increase in plaque size and macrophage content, driven by a baseline systemic monocytosis early in atherosclerosis pathogenesis. In contrast, knockout of MCP1 in Lgals3-transitioned SMCs using a complex dual lineage tracing system resulted in lesions with an increased Acta2 (actin alpha 2, smooth muscle)+ fibrous cap and decreased investment of Lgals3-transitioned SMCs, consistent with increased plaque stability. Finally, using flow cytometry and single-cell RNA sequencing, we show that MCP1 produced by Lgals3-transitioned SMCs influences multiple populations of inflammatory cells in late-stage plaques.MCP1 produced by classical SMCs influences monocyte levels beginning early in disease and was atheroprotective, while MCP1 produced by the Lgals3-transitioned subset of SMCs exacerbated plaque pathogenesis in late-stage disease. Results are the first to determine the function of Lgals3-transitioned inflammatory SMCs in atherosclerosis and highlight the need for caution when considering therapeutic interventions involving MCP1.
Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart

Cardiovascular research

2021 Oct 14

Bräuninger, H;Stoffers, B;Fitzek, ADE;Meißner, K;Aleshcheva, G;Schweizer, M;Weimann, J;Rotter, B;Warnke, S;Edler, C;Braun, F;Roedl, K;Scherschel, K;Escher, F;Kluge, S;Huber, TB;Ondruschka, B;Schultheiss, HP;Kirchhof, P;Blankenberg, S;Püschel, K;Westermann, D;Lindner, D;
PMID: 34647998 | DOI: 10.1093/cvr/cvab322

Cardiac involvement in COVID-19 is associated with adverse outcome. However, it is unclear whether cell specific consequences are associated with cardiac SARS-CoV-2 infection. Therefore, we investigated heart tissue utilizing in situ hybridization, immunohistochemistry and RNA-sequencing in consecutive autopsy cases to quantify virus load and characterize cardiac involvement in COVID-19.In this study, 95 SARS-CoV-2-positive autopsy cases were included. A relevant SARS-CoV-2 virus load in the cardiac tissue was detected in 41/95 deceased (43%). MACE-RNA-sequencing was performed to identify molecular pathomechanisms caused by the infection of the heart. A signature matrix was generated based on the single-cell dataset "Heart Cell Atlas" and used for digital cytometry on the MACE-RNA-sequencing data. Thus, immune cell fractions were estimated and revealed no difference in immune cell numbers in cases with and without cardiac infection. This result was confirmed by quantitative immunohistological diagnosis.MACE-RNA-sequencing revealed 19 differentially expressed genes (DEGs) with a q-value <0.05 (e.g. up: IFI44L, IFT3, TRIM25; down: NPPB, MB, MYPN). The upregulated DEGs were linked to interferon pathways and originate predominantly from endothelial cells. In contrast, the downregulated DEGs originate predominately from cardiomyocytes. Immunofluorescent staining showed viral protein in cells positive for the endothelial marker ICAM1 but rarely in cardiomyocytes. The GO term analysis revealed that downregulated GO terms were linked to cardiomyocyte structure, whereas upregulated GO terms were linked to anti-virus immune response.This study reveals, that cardiac infection induced transcriptomic alterations mainly linked to immune response and destruction of cardiomyocytes. While endothelial cells are primarily targeted by the virus, we suggest cardiomyocyte-destruction by paracrine effects. Increased pro-inflammatory gene expression was detected in SARS-CoV-2-infected cardiac tissue but no increased SARS-CoV-2 associated immune cell infiltration was observed.Cardiac injury can be documented in COVID-19, regardless the direct cardiac virus infection and is known to be associated with outcome. However, the direct virus infection of the myocardium leads to transcriptomic alterations and might therefore additionally contribute to pathophysiological processes in COVID-19. Therefore, consequences of cardiac virus infection need to be investigated in future studies, since they might also contribute to long-term effects in case of survival.
Microglia-derived CCL2 has a prime role in neocortex neuroinflammation

Fluids and barriers of the CNS

2022 Aug 30

Errede, M;Annese, T;Petrosino, V;Longo, G;Girolamo, F;de Trizio, I;d'Amati, A;Uccelli, A;Kerlero de Rosbo, N;Virgintino, D;
PMID: 36042496 | DOI: 10.1186/s12987-022-00365-5

In myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), several areas of demyelination are detectable in mouse cerebral cortex, where neuroinflammation events are associated with scarce inflammatory infiltrates and blood-brain barrier (BBB) impairment. In this condition, the administration of mesenchymal stem cells (MSCs) controls neuroinflammation, attenuating astrogliosis and promoting the acquisition of stem cell traits by astrocytes. To contribute to the understanding of the mechanisms involved in the pathogenesis of EAE in gray matter and in the reverting effects of MSC treatment, the neocortex of EAE-affected mice was investigated by analyzing the cellular source(s) of chemokine CCL2, a molecule involved in immune cell recruitment and BBB-microvessel leakage.The study was carried out by immunohistochemistry (IHC) and dual RNAscope IHC/in situ hybridization methods, using astrocyte, NG2-glia, macrophage/microglia, and microglia elective markers combined with CCL2.The results showed that in EAE-affected mice, hypertrophic microglia are the primary source of CCL2, surround the cortex neurons and the damaged BBB microvessels. In EAE-affected mice treated with MSCs, microgliosis appeared diminished very soon (6 h) after treatment, an observation that was long-lasting (tested after 10 days). This was associated with a reduced CCL2 expression and with apparently preserved/restored BBB features. In conclusion, the hallmark of EAE in the mouse neocortex is a condition of microgliosis characterized by high levels of CCL2 expression.This finding supports relevant pathogenetic and clinical aspects of the human disease, while the demonstrated early control of neuroinflammation and BBB permeability exerted by treatment with MSCs may have important therapeutic implications.
Mammary tumor-derived CCL2 enhances prometastatic systemic inflammation through upregulation of IL1β in tumor-associated macrophages

OncoImmunology

2017 Jun 19

Kersten K, Coffelt SB, Hoogstraat M, Verstegen NJM, Vrijland K, Ciampricotti M, Doornebal CW, Hau CS, Wellenstein MD, Salvagno C, Doshi P, Lips EH, Wessels LFH, de Visser KE.
PMID: - | DOI: 10.1080/2162402X.2017.1334744

Patients with primary solid malignancies frequently exhibit signs of systemic inflammation. Notably, elevated levels of neutrophils and their associated soluble mediators are regularly observed in cancer patients, and correlate with reduced survival and increased metastasis formation. Recently, we demonstrated a mechanistic link between mammary tumor-induced IL17-producing γδ T cells, systemic expansion of immunosuppressive neutrophils and metastasis formation in a genetically engineered mouse model for invasive breast cancer. How tumors orchestrate this systemic inflammatory cascade to facilitate dissemination remains unclear. Here we show that activation of this cascade relies on CCL2-mediated induction of IL1β in tumor-associated macrophages. In line with these findings, expression of CCL2 positively correlates with IL1Β and macrophage markers in human breast tumors. We demonstrate that blockade of CCL2 in mammary tumor-bearing mice results in reduced IL17 production by γδ T cells, decreased neutrophil expansion and enhanced CD8+ T cell activity. These results highlight a new role for CCL2 in facilitating the breast cancer-induced pro-metastatic systemic inflammatory γδ T cell – IL17 – neutrophil axis.

Successful hemostasis of bleeding gastric inflammatory fibroid polyp by endoscopic treatment in a patient with severe COVID-19

Clinical journal of gastroenterology

2021 Apr 11

Murota, A;Yoshi, S;Okuda, R;Oowada, S;Yamakawa, T;Kazama, T;Hirayama, D;Ishigami, K;Yamano, HO;Narimatu, E;Sugita, S;Hasegawa, T;Nakase, H;
PMID: 33840076 | DOI: 10.1007/s12328-021-01402-w

The coronavirus disease-2019 (COVID-19) has rapidly become a pandemic, resulting in a global suspension of non-emergency medical procedures such as screening endoscopic examinations. There have been several reports of COVID-19 patients presenting with gastrointestinal symptoms such as diarrhea and vomiting. In this report, we present a case of successful hemostasis of bleeding gastric inflammatory fibroid polyp by endoscopic treatment in a patient with severe COVID-19. The case was under mechanical ventilation with extracorporeal membrane oxygenation (ECMO), and the airway was on a closed circuit. This indicates that COVID-19 is associated with not only lung injury but also intestinal damage, and that proper protective protocols are essential in guaranteeing the best outcomes for patients and clinical professionals during this pandemic.
Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model

EMBO reports

2021 Apr 28

Thacker, VV;Sharma, K;Dhar, N;Mancini, GF;Sordet-Dessimoz, J;McKinney, JD;
PMID: 33908688 | DOI: 10.15252/embr.202152744

Severe cases of SARS-CoV-2 infection are characterized by hypercoagulopathies and systemic endotheliitis of the lung microvasculature. The dynamics of vascular damage, and whether it is a direct consequence of endothelial infection or an indirect consequence of an immune cell-mediated cytokine storm remain unknown. Using a vascularized lung-on-chip model, we find that infection of alveolar epithelial cells leads to limited apical release of virions, consistent with reports of monoculture infection. However, viral RNA and proteins are rapidly detected in underlying endothelial cells, which are themselves refractory to apical infection in monocultures. Although endothelial infection is unproductive, it leads to the formation of cell clusters with low CD31 expression, a progressive loss of barrier integrity and a pro-coagulatory microenvironment. Viral RNA persists in individual cells generating an inflammatory response, which is transient in epithelial cells but persistent in endothelial cells and typified by IL-6 secretion even in the absence of immune cells. Inhibition of IL-6 signalling with tocilizumab reduces but does not prevent loss of barrier integrity. SARS-CoV-2-mediated endothelial cell damage thus occurs independently of cytokine storm.
Neurons under T Cell Attack Coordinate Phagocyte-Mediated Synaptic Stripping

Cell

2018 Aug 30

Di Liberto G, Pantelyushin S, Kreutzfeldt M, Page N, Musardo S, Coras R, Steinbach K, Vincenti I, Klimek B, Lingner T, Salinas G, Lin-Marq N, Staszewski O, Costa Jordão MJ, Wagner I, Egervari K, Mack M, Bellone C, Blümcke I, Prinz M, Pinschewer DD, Merkle
PMID: - | DOI: 10.1016/j.cell.2018.07.049

Inflammatory disorders of the CNS are frequently accompanied by synaptic loss, which is thought to involve phagocytic microglia and complement components. However, the mechanisms accounting for aberrant synaptic connectivity in the context of CD8+ T cell-driven neuronal damage are poorly understood. Here, we profiled the neuronal translatome in a murine model of encephalitis caused by CD8+ T cells targeting antigenic neurons. Neuronal STAT1 signaling and downstream CCL2 expression were essential for apposition of phagocytes, ensuing synaptic loss and neurological disease. Analogous observations were made in the brains of Rasmussen’s encephalitis patients. In this devastating CD8+T cell-driven autoimmune disease, neuronal STAT1 phosphorylation and CCL2 expression co-clustered with infiltrating CD8+ T cells as well as phagocytes. Taken together, our findings uncover an active role of neurons in coordinating phagocyte-mediated synaptic loss and highlight neuronal STAT1 and CCL2 as critical steps in this process that are amenable to pharmacological interventions.

Immune imprinting, breadth of variant recognition and germinal center response in human SARS-CoV-2 infection and vaccination

Cell

2022 Jan 01

Röltgen, K;Nielsen, S;Silva, O;Younes, S;Maxim Zaslavsky, ;Costales, C;Yang, F;Wirz, O;Solis, D;Hoh, R;Wang, A;Arunachalam, P;Colburg, D;Zhao, S;Haraguchi, E;Lee, A;Shah, M;Manohar, M;Chang, I;Gao, F;Mallajosyula, V;Li, C;Liu, J;Shoura, M;Sindher, S;Parsons, E;Dashdorj, N;Dashdorj, N;Monroe, R;Serrano, G;Beach, T;Chinthrajah, R;Charville, G;Wilbur, J;Wohlstadter, J;Davis, M;Pulendran, B;Troxell, M;Sigal, G;Natkunam, Y;Pinsky, B;Nadeau, K;Boyd, S;
| DOI: 10.1016/j.cell.2022.01.018

During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including 3rd dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is less after infection compared to all vaccines evaluated, but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks post-vaccination in some cases. SARS-CoV-2 antibody specificity, breadth and maturation are affected by imprinting from exposure history, and distinct histological and antigenic contexts in infection compared to vaccination.
SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis

Cell

2021 Nov 01

Wendisch, D;Dietrich, O;Mari, T;von Stillfried, S;Ibarra, I;Mittermaier, M;Mache, C;Chua, R;Knoll, R;Timm, S;Brumhard, S;Krammer, T;Zauber, H;Hiller, A;Pascual-Reguant, A;Mothes, R;Bülow, R;Schulze, J;Leipold, A;Djudjaj, S;Erhard, F;Geffers, R;Pott, F;Kazmierski, J;Radke, J;Pergantis, P;Baßler, K;Conrad, C;Aschenbrenner, A;Sawitzki, B;Landthaler, M;Wyler, E;Horst, D;Hippenstiel, S;Hocke, A;Heppner, F;Uhrig, A;Garcia, C;Machleidt, F;Herold, S;Elezkurtaj, S;Thibeault, C;Witzenrath, M;Cochain, C;Suttorp, N;Drosten, C;Goffinet, C;Kurth, F;Schultze, J;Radbruch, H;Ochs, M;Eils, R;Müller-Redetzky, H;Hauser, A;Luecken, M;Theis, F;Conrad, C;Wolff, T;Boor, P;Selbach, M;Saliba, A;Sander, L;
| DOI: 10.1016/j.cell.2021.11.033

COVID-19-induced ‘acute respiratory distress syndrome’ (ARDS) is associated with prolonged respiratory failure and high mortality, but the mechanistic basis of lung injury remains incompletely understood. Here, we analyzed pulmonary immune responses and lung pathology in two cohorts of patients with COVID-19 ARDS using functional single cell genomics, immunohistology and electron microscopy. We describe an accumulation of CD163-expressing monocyte-derived macrophages that acquired a profibrotic transcriptional phenotype during COVID-19 ARDS. Gene set enrichment and computational data integration revealed a significant similarity between COVID-19-associated macrophages and profibrotic macrophage populations identified in idiopathic pulmonary fibrosis. COVID-19 ARDS was associated with clinical, radiographic, histopathological, and ultrastructural hallmarks of pulmonary fibrosis. Exposure of human monocytes to SARS-CoV-2, but not Influenza A virus or viral RNA analogs, was sufficient to induce a similar profibrotic phenotype in vitro. In conclusion, we demonstrate that SARS-CoV-2 triggers profibrotic macrophage responses and pronounced fibroproliferative ARDS.
Peripheral and lung resident memory T cell responses against SARS-CoV-2

Nature communications

2021 May 21

Grau-Expósito, J;Sánchez-Gaona, N;Massana, N;Suppi, M;Astorga-Gamaza, A;Perea, D;Rosado, J;Falcó, A;Kirkegaard, C;Torrella, A;Planas, B;Navarro, J;Suanzes, P;Álvarez-Sierra, D;Ayora, A;Sansano, I;Esperalba, J;Andrés, C;Antón, A;Ramón Y Cajal, S;Almirante, B;Pujol-Borrell, R;Falcó, V;Burgos, J;Buzón, MJ;Genescà, M;
PMID: 34021148 | DOI: 10.1038/s41467-021-23333-3

Resident memory T cells (TRM) positioned within the respiratory tract are probably required to limit SARS-CoV-2 spread and COVID-19. Importantly, TRM are mostly non-recirculating, which reduces the window of opportunity to examine these cells in the blood as they move to the lung parenchyma. Here, we identify circulating virus-specific T cell responses during acute infection with functional, migratory and apoptotic patterns modulated by viral proteins and associated with clinical outcome. Disease severity is associated predominantly with IFNγ and IL-4 responses, increased responses against S peptides and apoptosis, whereas non-hospitalized patients have increased IL-12p70 levels, degranulation in response to N peptides and SARS-CoV-2-specific CCR7+ T cells secreting IL-10. In convalescent patients, lung-TRM are frequently detected even 10 months after initial infection, in which contemporaneous blood does not reflect tissue-resident profiles. Our study highlights a balanced anti-inflammatory antiviral response associated with a better outcome and persisting TRM cells as important for future protection against SARS-CoV-2 infection.
Severe COVID-19 infection is associated with aberrant cytokine production by infected lung epithelial cells rather than by systemic immune dysfunction

Research square

2021 Nov 24

Gajewski, T;Rouhani, S;Trujillo, J;Pyzer, A;Yu, J;Fessler, J;Cabanov, A;Higgs, E;Cron, K;Zha, Y;Lu, Y;Bloodworth, J;Abasiyanik, M;Okrah, S;Flood, B;Hatogai, K;Leung, M;Pezeshk, A;Kozloff, L;Reschke, R;Strohbehn, G;Chervin, CS;Kumar, M;Schrantz, S;Madariaga, ML;Beavis, K;Yeo, KT;Sweis, R;Segal, J;Tay, S;Izumchenko, E;Mueller, J;Chen, L;
PMID: 34845442 | DOI: 10.21203/rs.3.rs-1083825/v1

The mechanisms explaining progression to severe COVID-19 remain poorly understood. It has been proposed that immune system dysregulation/over-stimulation may be implicated, but it is not clear how such processes would lead to respiratory failure. We performed comprehensive multiparameter immune monitoring in a tightly controlled cohort of 128 COVID-19 patients, and used the ratio of oxygen saturation to fraction of inspired oxygen (SpO2 / FiO2) as a physiologic measure of disease severity. Machine learning algorithms integrating 139 parameters identified IL-6 and CCL2 as two factors predictive of severe disease, consistent with the therapeutic benefit observed with anti-IL6-R antibody treatment. However, transcripts encoding these cytokines were not detected among circulating immune cells. Rather, in situ analysis of lung specimens using RNAscope and immunofluorescent staining revealed that elevated IL-6 and CCL2 were dominantly produced by infected lung type II pneumocytes. Severe disease was not associated with higher viral load, deficient antibody responses, or dysfunctional T cell responses. These results refine our understanding of severe COVID-19 pathophysiology, indicating that aberrant cytokine production by infected lung epithelial cells is a major driver of immunopathology. We propose that these factors cause local immune regulation towards the benefit of the virus.
The Presence of Interleukin-13 at Pancreatic ADM/PanIN Lesions Alters Macrophage Populations and Mediates Pancreatic Tumorigenesis.

Cell Rep.

2017 May 16

Liou GY, Bastea L, Fleming A, Döppler H, Edenfield BH, Dawson DW, Zhang L, Bardeesy N, Storz P.
PMID: 28514653 | DOI: 10.1016/j.celrep.2017.04.052

The contributions of the innate immune system to the development of pancreatic cancer are still ill defined. Inflammatory macrophages can initiate metaplasia of pancreatic acinar cells to a duct-like phenotype (acinar-to-ductal metaplasia [ADM]), which then gives rise to pancreatic intraepithelial neoplasia (PanIN) when oncogenic KRas is present. However, it remains unclear when and how this inflammatory macrophage population is replaced by tumor-promoting macrophages. Here, we demonstrate the presence of interleukin-13 (IL-13), which can convert inflammatory into Ym1+ alternatively activated macrophages, at ADM/PanIN lesions. We further show that Ym1+ macrophages release factors, such as IL-1ra and CCL2, to drive pancreatic fibrogenesis and tumorigenesis. Treatment of mice expressing oncogenic KRas under an acinar cell-specific promoter with a neutralizing antibody for IL-13 significantly decreased the accumulation of alternatively activated macrophages at these lesions, resulting in decreased fibrosis and lesion growth.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?