Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (108)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • (-) Remove HPV E6/E7 filter HPV E6/E7 (78)
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • (-) Remove SHH filter SHH (27)
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.0 Assay (31) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Brown Assay (10) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope Fluorescent Multiplex Assay (6) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Red assay (5) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 VS Assay (5) Apply RNAscope 2.5 VS Assay filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent Assay (4) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (3) Apply RNAscope filter
  • RNAscope ISH Probe High Risk HPV (2) Apply RNAscope ISH Probe High Risk HPV filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (1) Apply RNAscope Multiplex Fluorescent v2 filter
  • TBD (1) Apply TBD filter

Research area

  • Cancer (79) Apply Cancer filter
  • HPV (68) Apply HPV filter
  • Infectious Disease (64) Apply Infectious Disease filter
  • Neuroscience (10) Apply Neuroscience filter
  • Development (5) Apply Development filter
  • Other (5) Apply Other filter
  • Developmental (4) Apply Developmental filter
  • Stem Cells (4) Apply Stem Cells filter
  • Inflammation (3) Apply Inflammation filter
  • Immunotherapy (2) Apply Immunotherapy filter
  • Bone (1) Apply Bone filter
  • Circadian Rhythms (1) Apply Circadian Rhythms filter
  • Fingerprints (1) Apply Fingerprints filter
  • Gastric Development (1) Apply Gastric Development filter
  • Other: Methods (1) Apply Other: Methods filter
  • Other: Reproductive Biology (1) Apply Other: Reproductive Biology filter
  • Protocols (1) Apply Protocols filter
  • Regeneration (1) Apply Regeneration filter
  • Skin (1) Apply Skin filter

Category

  • Publications (108) Apply Publications filter
Human Papillomavirus-related Carcinoma with Adenoid Cystic-like Features of the Sinonasal Tract: Clinical and Morphological Characterization of 6 New Cases.

Histopathology.

2016 Dec 30

Andreasen S, Bishop J, Hansen TV, Westra WH, Bilde A, von Buchwald C, Kiss K.
PMID: 28035703 | DOI: 10.1111/his.13162

Human Papillomavirus (HPV) is known as causative for squamous cell carcinoma (SCC) of the oropharynx, but is also not infrequently found in carcinomas of the sinonasal tract. Recently, a subset of these carcinomas was recognized to harbour HPV33 and have a significant morphological overlap with adenoid cystic carcinoma (ACC), a rare and aggressive carcinoma originating in the minor salivary glands. Termed HPV-related carcinoma with ACC-like features, only 9 cases have been reported. To clarify the occurrence of these tumours we screened a large material for presence of HPV-related ACC-like carcinoma. The identified tumours were characterized immunohistochemically and with fluorescence in situ hybridization and clinicopathologic information for all cases is presented.

METHODS AND RESULTS:

Forty-seven candidate cases were screened for presence of HPV. Six cases were identified and genotyped as HPV types 33, 35 and 56. All six cases had areas of dysplastic mucosal lining and showed remarkable heterogeneous morphologies. MYB, MYBL1, and NFIB genes were intact and, interestingly, staining for MYB protein was largely negative in contrast to what was found in ACC. One patient experienced a local recurrence 11 years after initial treatment and the remaining five patients were alive without evidence of disease.

CONCLUSION:

We report six new cases of HPV-related ACC-like carcinoma and found that, although in a small material, the prognosis for these patients seems more favourable than for ACC. For the distinction between ACC and HPV-related ACC-like carcinoma, p16, MYB immunohistochemistry, or investigation of MYB, MYBL1, and NFIB gene status are valuable. This article is protected by copyright. All rights reserved.

Increasing prevalence of human papillomavirus-positive oropharyngeal cancers among older adults.

Cancer.

2018 Apr 30

Windon MJ, D'Souza G, Rettig EM, Westra WH, van Zante A, Wang SJ, Ryan WR, Mydlarz WK, Ha PK, Miles BA, Koch W, Gourin C, Eisele DW, Fakhry C.
PMID: 29710393 | DOI: 10.1002/cncr.31385

Abstract

BACKGROUND:

The incidence of oropharyngeal squamous cell carcinoma (OPSCC) is increasing among older adults. It is unknown whether these trends can be explained by human papillomavirus (HPV) and whether HPV-related tumors remain associated with an improved prognosis among older patients.

METHODS:

In a retrospective study of OPSCCs diagnosed from 1995 to 2013 at 2 National Comprehensive Cancer Network-designated cancer centers, p16 immunohistochemistry and in situ hybridization (ISH) for HPV-16, high-risk DNA, and/or E6/E7 RNA were performed. The median age at diagnosis was compared by p16 and ISH tumor status. Trends in age were analyzed with nonparametric trends. Survival was analyzed with the Kaplan-Meier method and Cox proportional hazards models.

RESULTS:

Among 239 patients, 144 (60%) were p16-positive. During 1998-2013, the median age increased among p16-positive patients (Ptrend = .01) but not among p16-negative patients (Ptrend = .71). The median age of p16-positive patients increased from 53 years (interquartile range [IQR] in 1995-2000, 45-65 years) to 58 years (IQR for 2001-2013, 53-64 years). Among patients ≥ 65 years old, the proportion of OPSCCs that were p16-positive increased from 41% during 1995-2000 to 75% during 2007-2013 (Ptrend = .04). Among all age groups, including older patients, a p16-positive tumor status conferred improved overall survival in comparison with a p16-negative status.

CONCLUSIONS:

The median age at diagnosis for HPV-related OPSCC is increasing as the proportion of OPSCCs caused by HPV rises among older adults. The favorable survival conferred by an HPV-positive tumor status persists in older adults. Cancer 2018. © 2018 American Cancer Society.

Penile Squamous Cell Carcinoma Exclusive to the Shaft, with a Proposal for a Novel Staging System

Human pathology

2022 Dec 22

Tekin, B;Guo, R;Cheville, JC;Canete-Portillo, S;Sanchez, DF;Fernandez-Nestosa, MJ;Dasari, S;Menon, S;Herrera Hernandez, L;Jimenez, RE;Erickson, LA;Cubilla, AL;Gupta, S;
PMID: 36566905 | DOI: 10.1016/j.humpath.2022.12.012

Penile squamous cell carcinomas (SCC) originating in the shaft are rare. pT1/pT2 categories in the American Joint Committee on Cancer (AJCC) staging manual (8th edition) are poorly defined for SCCs arising in the dorsal shaft as anatomic structures differ between the glans and dorsal shaft (corpus spongiosum vs dartos/Buck's fascia, respectively). We reviewed six penile SCC cases exclusive to the shaft, an unusual presentation, identified amongst 120 patients treated with penectomy. We propose a novel pT staging system for dorsal shaft tumors tailored to its anatomic landmarks, where tumors extending to Buck's fascia are considered pT2 instead of pT1. The mean age at penectomy, average duration of follow-up, and mean depth of invasion were 64 years, 45 months, and 9.8 mm, respectively. Four cases were moderately differentiated, HPV-negative SCCs of the usual type and two cases were HPV-positive basaloid and warty-basaloid carcinomas. Three cases had nodal or distant metastasis at the time of penectomy, and histologic assessment in these cases showed invasion into the Buck's fascia or deeper. According to the current AJCC system, only one of these three cases would be staged as ≥pT2. In contrast, all three metastatic tumors would be staged as ≥pT2 in the proposed model. At last follow-up, one patient died of disease-related complications. Based on this limited series, the proposed staging model appears to suggest better patient stratification for pT1/pT2 stages. This model incorporates Buck's fascia, which has been postulated as a pathway of tumor infiltration. Additional studies are needed to validate this model.
Tracing the origin of hair follicle stem cells

Nature

2021 Jun 01

Morita, R;Sanzen, N;Sasaki, H;Hayashi, T;Umeda, M;Yoshimura, M;Yamamoto, T;Shibata, T;Abe, T;Kiyonari, H;Furuta, Y;Nikaido, I;Fujiwara, H;
PMID: 34108685 | DOI: 10.1038/s41586-021-03638-5

Tissue stem cells are generated from a population of embryonic progenitors through organ-specific morphogenetic events1,2. Although tissue stem cells are central to organ homeostasis and regeneration, it remains unclear how they are induced during development, mainly because of the lack of markers that exclusively label prospective stem cells. Here we combine marker-independent long-term 3D live imaging and single-cell transcriptomics to capture a dynamic lineage progression and transcriptome changes in the entire epithelium of the mouse hair follicle as it develops. We found that the precursors of different epithelial lineages were aligned in a 2D concentric manner in the basal layer of the hair placode. Each concentric ring acquired unique transcriptomes and extended to form longitudinally aligned, 3D cylindrical compartments. Prospective bulge stem cells were derived from the peripheral ring of the placode basal layer, but not from suprabasal cells (as was previously suggested3). The fate of placode cells is determined by the cell position, rather than by the orientation of cell division. We also identified 13 gene clusters: the ensemble expression dynamics of these clusters drew the entire transcriptional landscape of epithelial lineage diversification, consistent with cell lineage data. Combining these findings with previous work on the development of appendages in insects4,5, we describe the 'telescope model', a generalized model for the development of ectodermal organs in which 2D concentric zones in the placode telescope out to form 3D longitudinally aligned cylindrical compartments.
Validation of a novel diagnostic standard in HPV-positive oropharyngeal squamous cell carcinoma.

British journal of cancer, 108(6):1332–1339.

Schache AG, Liloglou T, Risk JM, Jones TM, Ma XJ, Wang H, Bui S, Luo Y, Sloan P, Shaw RJ, Robinson M (2013).
PMID: 23412100 | DOI: 10.1038/bjc.2013.63.

BACKGROUND: Human papillomavirus (HPV) testing in oropharyngeal squamous cell carcinoma (OPSCC) is now advocated. Demonstration of transcriptionally active high-risk HPV (HR-HPV) in fresh tumour tissue is considered to be the analytical 'gold standard'. Clinical testing has focused on formalin-fixed paraffin-embedded (FFPE) tissue at the expense of sensitivity and specificity. Recently, a novel RNA in situ hybridisation test (RNAscope) has been developed for the detection of HR-HPV in FFPE tissue; however, validation against the 'gold standard' has not been reported. METHODS: A tissue microarray comprising FFPE cores from 79 OPSCC was tested using HR-HPV RNAscope. Analytical accuracy and prognostic capacity were established by comparison with the reference test; qRT-PCR for HR-HPV on matched fresh-frozen samples. RESULTS: High-risk HPV RNAscope had a sensitivity and specificity of 97 and 93%, respectively, against the reference test. Kaplan-Meier estimates of disease-specific survival (DSS, P=0.001) and overall survival (OS, P<0.001) by RNAscope were similar to the reference test (DSS, P=0.003, OS, P<0.001) and at least, not inferior to p16 immunohistochemistry +/- HR-HPV DNA-based tests. CONCLUSION: HR-HPV RNAscope demonstrates excellent analytical and prognostic performance against the 'gold standard'. These data suggest that the test could be developed to provide the 'clinical standard' for assigning a diagnosis of HPV-related OPSCC.
Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex.

Proc Natl Acad Sci U S A. 2018 Dec 12.

2018 Dec 12

Mathieu M, Drelon C, Rodriguez S, Tabbal H, Septier A, Damon-Soubeyrand C, Dumontet T, Berthon A, Sahut-Barnola I, Djari C, Batisse-Lignier M, Pointud JC, Richard D, Kerdivel G, Calméjane MA, Boeva V, Tauveron I, Lefrançois-Martinez AM, Martinez A, Val P.
PMID: 30541888 | DOI: 10.1073/pnas.1809185115

Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.
A cynomolgus macaque model for Crimean–Congo haemorrhagic fever

Nat Microbiol.

2018 Apr 09

Haddock E, Feldmann F, Hawman DW, Zivcec M, Hanley PW, Saturday G, Scott DP, Thomas T, Korva M, Avšič -Županc T, Safronetz D, Feldmann H.
PMID: 29632370 | DOI: 10.1038/s41564-018-0141-7

Crimean-Congo haemorrhagic fever (CCHF) is the most medically significant tick-borne disease, being widespread in the Middle East, Asia, Africa and parts of Europe 1 . Increasing case numbers, westerly movement and broadly ranging case fatality rates substantiate the concern of CCHF as a public health threat. Ixodid ticks of the genus Hyalomma are the vector for CCHF virus (CCHFV), an arbovirus in the genus Orthonairovirus of the family Nairoviridae. CCHFV naturally infects numerous wild and domestic animals via tick bite without causing obvious disease2,3. Severe disease occurs only in humans and transmission usually happens through tick bite or contact with infected animals or humans. The only CCHF disease model is a subset of immunocompromised mice4-6. Here, we show that following CCHFV infection, cynomolgus macaques exhibited hallmark signs of human CCHF with remarkably similar viral dissemination, organ pathology and disease progression. Histopathology showed infection of hepatocytes, endothelial cells and monocytes and fatal outcome seemed associated with endothelial dysfunction manifesting in a clinical shock syndrome with coagulopathy. This non-human primate model will be an invaluable asset for CCHFV countermeasures development.

Diagnosis of HPV-driven head and neck cancer with a single test in routine clinical practice.

Mod Pathol.

2015 Sep 25

Mirghani H, Casiraghi O, Amen F, He M, Ma XJ, Saulnier P, Lacroix L, Drusch F, Ben Lakdhar A, Saint Guily JL, Badoual C, Scoazec JY, Vielh P.
PMID: 26403782 | DOI: 10.1038/modpathol.2015.113

Abstract

Accurate screening of HPV-driven head and neck squamous cell carcinoma is a critical issue. Although there are commercial direct and indirect assays for HPV-related head and neck squamous cell carcinoma, none are ideal. Recently, a novel RNA in situ hybridization test (the RNAscope HPV-test) has been developed for the detection of high-risk HPV E6/E7 mRNA in formalin-fixed paraffin-embedded tissue. However, validation of this assay against the 'gold standard' (identification of high-risk HPV E6/E7 mRNA in fresh-frozen tissue by quantitative real-time (qRT)-PCR) has only been reported by one team. Formalin-fixed paraffin-embedded samples from 50 patients with tonsil or tongue base carcinoma were tested using the RNAscope HPV-test, p16 immunohistochemistry, and chromogenic in situ hybridization for high-risk HPV-DNA. The results were compared with those of qRT-PCR on matched fresh-frozen samples. Compared with the reference test, the sensitivity, specificity, positive, and negative predictive values of the RNAscope HPV-test and of p16 immunohistochemistry were 93%, 94%, 96%, 88% and 96%, 93%, 96%, and 93%, respectively. Five cases were discrepant between the RNAscope HPV-test and p16-immunohistochemisrty. The RNAscope HPV-test demonstrated excellent analytical performance against the 'gold standard' and is easier to interpret than chromogenic in situ hybridization. p16-immunohistochemistry also performed very well, however its main weakness is that it is an indirect marker of the presence of HPV. These data suggest that the RNAscope HPV-test is a promising test that could be developed as a clinical standard for the precise identification of HPV-driven oropharyngeal squamous cell carcinoma.

Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development

PLoS Genet.

2016 Jul 14

Perdigoto CN, Dauber KL, Bar C, Tsai PC, Valdes VJ, Cohen I, Santoriello FJ, Zhao D, Zheng D, Hsu YC, Ezhkova E.
PMID: 27414999 | DOI: 10.1371/journal.pgen.1006151.

An increasing amount of evidence indicates that developmental programs are tightly regulated by the complex interplay between signalingpathways, as well as transcriptional and epigenetic processes. Here, we have uncovered coordination between transcriptional and morphogen cues to specify Merkel cells, poorly understood skin cells that mediate light touch sensations. In murine dorsal skin, Merkel cells are part of touch domes, which are skin structures consisting of specialized keratinocytes, Merkel cells, and afferent neurons, and are located exclusively around primary hair follicles. We show that the developing primary hair follicle functions as a niche required for Merkel cell specification. We find that intraepidermal Sonic hedgehog (Shh) signaling, initiated by the production of Shh ligand in the developing hair follicles, is required forMerkel cell specification. The importance of Shh for Merkel cell formation is further reinforced by the fact that Shh overexpression in embryonic epidermal progenitors leads to ectopic Merkel cells. Interestingly, Shh signaling is common to primary, secondary, and tertiary hair follicles, raising the possibility that there are restrictive mechanisms that regulate Merkel cell specification exclusively around primary hair follicles. Indeed, we find that loss of Polycomb repressive complex 2 (PRC2) in the epidermis results in the formation of ectopic Merkel cells that are associated with all hair types. We show that PRC2 loss expands the field of epidermal cells competent to differentiate into Merkel cells through the upregulation of key Merkel-differentiation genes, which are known PRC2 targets. Importantly, PRC2-mediated repression of the Merkel celldifferentiation program requires inductive Shh signaling to form mature Merkel cells. Our study exemplifies how the interplay between epigenetic and morphogen cues regulates the complex patterning and formation of the mammalian skin structures.

HPV RNA CISH score identifies two prognostic groups in a p16 positive oropharyngeal squamous cell carcinoma population

Modern Pathology

2018 Jun 20

Augustin J, Mandavit M, Outh-Gauer S, Grard O, Gasne C, Lépine C, Mirghani H, Hans S, Bonfils P, Denize T, Bruneval P, Bishop JA, Fontugne J, Péré H, Tartour E, Badoual C.
PMID: - | DOI: 10.1038/s41379-018-0090-y

HPV-related and HPV-unrelated oropharyngeal squamous cell carcinomas are two distinct entities according to the Union for International Cancer Control, with a better prognosis conferred to HPV-related oropharyngeal squamous cell carcinomas. However, variable clinical outcomes are observed among patients with p16 positive oropharyngeal squamous cell carcinoma, which is a surrogate marker of HPV infection. We aimed to investigate the prognostic value of RNA CISH against E6 and E7 transcripts (HPV RNA CISH) to predict such variability. We retrospectively included 50 histologically confirmed p16 positive oropharyngeal squamous cell carcinomas (p16 positive immunostaining was defined by a strong staining in 70% or more of tumor cells). HPV RNA CISH staining was assessed semi-quantitatively to define two scores: RNA CISH “low” and RNA CISH “high”. Negative HPV RNA CISH cases were scored as RNA CISH “low”. This series contained 29 RNA CISH low cases (58%) and 21 RNA CISH high cases (42%). Clinical and pathologic baseline characteristics were similar between the two groups. RNA CISH high staining was associated with a better overall survival in both univariate and multivariate analyses (p = 0.033 and p = 0.042, respectively). Other recorded parameters had no prognostic value. In conclusion, HPV RNA CISH might be an independent prognostic marker in p16 positive oropharyngeal squamous cell carcinomas and might help guide therapeutics.

Diagnosis of HPV driven oropharyngeal cancers: Comparing p16 based algorithms with the RNAscope HPV-test

Oral Oncology

2016 Oct 15

Mirghani H, Casiraghi O, Guerlain J, Amen F, He MX, Ma XJ, Luo Y, Mourareau C, Drusch F, Lakdhar AB, Melkane A, St Guily L, Badoual C, Scoazec JY, Borget I, Aupérin A, Dalstein V, Vielh P.
PMID: - | DOI: http://dx.doi.org/10.1016/j.oraloncology.2016.10.009

Abstract

Background

Accurate identification of HPV-driven oropharyngeal cancer (OPC) is a major issue and none of the current diagnostic approaches is ideal. An in situ hybridization (ISH) assay that detects high-risk HPV E6/E7 mRNA, called the RNAscope HPV-test, has been recently developed. Studies have suggested that this assay may become a standard to define HPV-status.

Methods

To further assess this test, we compared its performance against the strategies that are used in routine clinical practice: p16 immunohistochemistry (IHC) as a single test and algorithms combining p16-IHC with HPV-DNA identification by PCR (algorithm-1) or ISH (algorithm-2).

Results

105 OPC specimens were analyzed. The prevalence of HPV-positive samples varied considerably: 67% for p16-IHC, 54% for algorithm-1, 61% for algorithm-2 and 59% for the RNAscope HPV-test. Discrepancies between the RNAscope HPV-test and p16-IHC, algorithm-1 and 2 were noted in respectively 13.3%, 13.1%, and 8.6%.

The 4 diagnostic strategies were able to identify 2 groups with different prognosis according to HPV-status, as expected. However, the greater survival differential was observed with the RNAscope HPV-test [HR: 0.19, 95% confidence interval (CI), 0.07–0.51, p = 0.001] closely followed by algorithm-1 (HR: 0.23, 95% CI, 0.08–0.66, p = 0.006) and algorithm-2 (HR: 0.26, 95% CI, 0.1–0.65, p = 0.004). In contrast, a weaker association was found when p16-IHC was used as a single test (HR: 0.33, 95% CI, 0.13–0.81, p = 0.02).

Conclusions

Our findings suggest that the RNAscope HPV-test and p16-based algorithms perform better that p16 alone to identify OPC that are truly driven by HPV-infection. The RNAscope HPV-test has the advantage of being a single test.

Spindle Cell Carcinomas of the Head and Neck Rarely Harbor Transcriptionally-Active Human Papillomavirus.

Head and neck pathology, ;7(3):250–257.

Watson RF, Chernock RD, Wang X, Liu W, Ma XJ, Luo Y, Wang H, El-Mofty SK, Lewis JS Jr (2013).
PMID: 23536041 | DOI: 10.1007/s12105-013-0438-z.

Spindle cell carcinoma is an uncommon variant of squamous cell carcinoma characterized by spindled or pleomorphic cells which appear to be a true sarcoma but are actually epithelial. Some head and neck squamous cell carcinoma variants can be human papillomavirus (HPV)-related and have improved outcomes. We sought to determine if spindle cell carcinomas are associated with transcriptionally-active HPV. Cases of spindle cell carcinoma were retrieved from department files. Transcriptionally-active HPV was determined by mRNA in situ hybridization for high risk HPV E6 and E7 transcripts and by a surrogate marker, p16 immunohistochemistry, with a 50% staining cutoff. RT-PCR for high risk HPV mRNA was performed on the cases that were technical failures by in situ hybridization. Medical records and follow up information were retrieved for all patients. Of 31 cases, 5 were from the oropharynx, 12 from the oral cavity, and 14 from the larynx or hypopharynx. One purely spindled oral cavity spindle cell carcinoma was HPV positive. It was also diffusely positive for p16. Another laryngeal spindle cell carcinoma was HPV positive in both the squamous and spindle cell components, but was negative for p16. None of the five oropharyngeal spindle cell carcinomas were positive for p16 or HPV RNA. The HPV positive patients both presented at high stage (IV) and died with disease within 2 years of diagnosis. The majority of spindle cell carcinomas of the head and neck, including those arising in the oropharynx, are not related to transcriptionally active HPV. Although the number of cases is too small for any definitive conclusions, for the rare HPV positive spindle cell carcinoma cases, positive viral status does not appear to confer any prognostic benefit.

Pages

  • « first
  • ‹ previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?