ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Neuropsychopharmacology. 2014 Nov 6.
Zhang HY, Bi GH, Li X, Li J, Qu H, Zhang SJ, Li CY, Onaivi ES, Gardner EL, Xi ZX, Liu QR
PMID: 25374096 | DOI: 10.1038/npp.2014.297
BMC biology
2022 Sep 21
Hu, S;Wang, Y;Han, X;Dai, M;Zhang, Y;Ma, Y;Weng, S;Xiao, L;
PMID: 36127701 | DOI: 10.1186/s12915-022-01405-0
J Neurosci.
2019 May 01
Lemos JC, Shin JH, Alvarez VA.
PMID: 31109960 | DOI: 10.1523/JNEUROSCI.0479-19.2019
Cholinergic interneurons (CINs) are critical regulators of striatal network activity and output. Changes in CIN activity are thought to encode salient changes in the environment and stimulus-response-outcome associations. Here we report that the stress-associated neuropeptide corticotropin releasing factor (CRF) produces a profound and reliable increase in the spontaneous firing of CINs in both dorsal striatum and nucleus accumbens (NAc) through activation of CRF type 1 receptors, production of cAMP and reduction in spike accommodation in male mice. The increase of CIN firing by CRF results in the activation muscarinic acetylcholine receptors type 5, which mediate potentiation of dopamine transmission in the striatum. This study provides critical mechanistic insight into how CRF modulates striatal activity and dopamine transmission in the NAc to likely account for CRF facilitation of appetitive behaviors.SIGNIFICANCE STATEMENT Although the presence of CRF receptors in the dorsal and ventral striatum has been acknowledged, the cellular identity and the functional consequences of receptor activation is unknown. Here we report that striatal cholinergic interneurons express CRF-R1 receptors and are acutely activated by the neuropeptide CRF that is released in response to salient environmental stimuli. Cholinergic interneurons make <1% of the cells in the striatum but are critical regulators of the striatal circuitry and its output. CRF's fast and potent activation of cholinergic interneurons could have far reaching behavioral implications across motivated behaviors controlled by the striatum.
Scientific reports
2021 Jun 14
Yu, W;Caira, CM;Del R Rivera Sanchez, N;Moseley, GA;Kash, TL;
PMID: 34127705 | DOI: 10.1038/s41598-021-91672-8
Neuroscience.
2015 Oct 26
Li Y, Kim J.
PMID: 26515747 | DOI: 10.1016/j.neuroscience.2015.10.041.
In the brain, CB1 cannabinoid receptors primarily mediate the effects of cannabinoids, but CB2 cannabinoid receptors (CB2Rs) have recently been discovered in the nervous system and also implicated in neuromodulatory roles. To understand the mechanisms of CB2R functions in the brain, it is essential to localize CB2Rs, but the types of cells expressing CB2Rs have been controversial. Unequivocal localization of CB2Rs in the brain has been impeded in part by the low expression levels of CB2Rs and poor specificity of detection methods. Here, we used an ultrasensitive and specific in situ hybridization method called the RNAscope to determine the spatial pattern of CB2R mRNA expression in the mouse hippocampus. CB2R mRNAs were mostly expressed in a subset of excitatory and inhibitory neurons in the CA1, CA3 and dentate gyrus areas, but rarely in microglia. CB2R knock-out mice were used as a negative control. Using the quantitative real-time polymerase chain reaction, we also found that the temporal pattern of CB2R mRNA expression was stable during postnatal development. Consistent with previous reports, the immunological detection of CB2Rs was not reliable, implying extremely low levels of the protein expression and/or insufficient specificity of the current anti-CB2R antibodies. Our findings of the expression patterns of CB2R mRNAs may help determine the cell types involved in, and hence the mechanisms of, the CB2R-mediated neuromodulation.
Science advances
2022 Sep 02
Porcu, A;Nilsson, A;Booreddy, S;Barnes, SA;Welsh, DK;Dulcis, D;
PMID: 36054362 | DOI: 10.1126/sciadv.abn9867
Proceedings of the National Academy of Sciences of the United States of America
2021 Jul 06
Cimino, I;Kim, H;Tung, YCL;Pedersen, K;Rimmington, D;Tadross, JA;Kohnke, SN;Neves-Costa, A;Barros, A;Joaquim, S;Bennett, D;Melvin, A;Lockhart, SM;Rostron, AJ;Scott, J;Liu, H;Burling, K;Barker, P;Clatworthy, MR;Lee, EC;Simpson, AJ;Yeo, GSH;Moita, LF;Bence, KK;Jørgensen, SB;Coll, AP;Breen, DM;O'Rahilly, S;
PMID: 34187898 | DOI: 10.1073/pnas.2106868118
Sci Rep.
2017 Dec 12
Liu QR, Canseco-Alba A, Zhang HY, Tagliaferro P, Chung M, Dennis E, Sanabria B, Schanz N, Escosteguy-Neto JC, Ishiguro H, Lin Z, Sgro S, Leonard CM, Santos-Junior JG, Gardner EL, Egan JM, Lee JW, Xi ZX, Onaivi ES.
PMID: 29234141 | DOI: 10.1038/s41598-017-17796-y
Cannabinoid CB2 receptors (CB2Rs) are expressed in mouse brain dopamine (DA) neurons and are involved in several DA-related disorders. However, the cell type-specific mechanisms are unclear since the CB2R gene knockout mice are constitutive gene knockout. Therefore, we generated Cnr2-floxed mice that were crossed with DAT-Cre mice, in which Cre- recombinase expression is under dopamine transporter gene (DAT) promoter control to ablate Cnr2 gene in midbrain DA neurons of DAT-Cnr2 conditional knockout (cKO) mice. Using a novel sensitive RNAscope in situ hybridization, we detected CB2R mRNA expression in VTA DA neurons in wildtype and DAT-Cnr2 cKO heterozygous but not in the homozygous DAT-Cnr2 cKO mice. Here we report that the deletion of CB2Rs in dopamine neurons enhances motor activities, modulates anxiety and depression-like behaviors and reduces the rewarding properties of alcohol. Our data reveals that CB2Rs are involved in the tetrad assay induced by cannabinoids which had been associated with CB1R agonism. GWAS studies indicates that the CNR2 gene is associated with Parkinson's disease and substance use disorders. These results suggest that CB2Rs in dopaminergic neurons may play important roles in the modulation of psychomotor behaviors, anxiety, depression, and pain sensation and in the rewarding effects of alcohol and cocaine.
Addict Biol.
2016 Feb 01
Zhang HY, Gao M, Shen H, Bi GH, Yang HJ, Liu QR, Wu J, Gardner EL, Bonci A, Xi ZX.
PMID: 26833913 | DOI: 10.1111/adb.12367.
We have recently reported the expression of functional cannabinoid CB2 receptors (CB2 Rs) in midbrain dopamine (DA) neurons in mice. However, little is known whether CB2 Rs are similarly expressed in rat brain because significant species differences in CB2 R structures and expression are found. In situ hybridization and immunohistochemical assays detected CB2 gene and receptors in DA neurons of the ventral tegmental area (VTA), which was up-regulated in cocaine self-administration rats. Electrophysiological studies demonstrated that activation of CB2 Rs by JWH133 inhibited VTA DA neuronal firing in single dissociated neurons. Systemic administration of JWH133 failed to alter, while local administration of JWH133 into the nucleus accumbens inhibited cocaine-enhanced extracellular DA and i.v. cocaine self-administration. This effect was blocked by AM630, a selective CB2 R antagonist. These data suggest that CB2 Rs are expressed in VTA DA neurons and functionally modulate DA neuronal activities and cocaine self-administration behavior in rats.
Neurosci Lett.
2018 Jun 11
Fujii Y, Suzuki K, Hasegawa Y, Nanba F, Toda T, Adachi T, Taira S, Osakabe N.
PMID: 29902479 | DOI: 10.1016/j.neulet.2018.06.015
We previously confirmed that postprandial alterations in the circulation and metabolism after a single oral dose of flavan 3-ols (mixture of catechin and catechin oligomers) were involved in an increase in sympathetic nervous activity. However, it is well known that, in response to various stresses, activation of the hypothalamic-pituitary-adrenal (HPA) axis occurs together with sympathetic nerve activity, which is associated with activation of the sympathetic-adrenal-medullary (SAM) axis. In this study, we examined whether the HPA axis was activated after a single dose of flavan 3-ols. We administered an oral dose of 10 or 50 mg/kg flavan 3-ols to male ICR mice, removed the brains, and fixed them in paraformaldehyde-phosphate buffer. Other animals that were treated similarly were decapitated, and blood was collected. In the paraventricular nucleus (PVN), c-fos mRNA expression increased significantly at 15 min after administration of either 10 or 50 mg/kg flavan 3-ols. Corticotropin-releasing hormone (CRH) mRNA expression levels significantly increased at 240 min after administration of 10 mg/kg flavan 3-ols, and at 60 min after administration of 50 mg/kg flavan 3-ols. Plasma corticosterone levels were also significantly increased at 240 min after ingestion of 50 mg/kg flavan 3-ols. In this experiment, we confirmed that the ingestion of flavan 3-ols acted as a stressor in mammals with activation both the SAM and HPA axes.
Am J Physiol Renal Physiol.
2018 Aug 08
Tykocki NR, Heppner TJ, Erikson CS, van Batavia JP, Vizzard MA, Nelson MT, Mingin GC.
PMID: 30089031 | DOI: 10.1152/ajprenal.00231.2018
Social stress causes profound urinary bladder dysfunction in children that often continues into adulthood. We discovered that the intensity and duration of social stress influences whether bladder dysfunction presents as overactivity or underactivity. The transient receptor potential vanilloid type 1 (TRPV1) channel is integral in causing stress-induced bladder overactivity by increasing bladder sensory outflow, but little is known about the development of stress-induced bladder underactivity. We sought to determine if TRPV1 channels are involved in bladder underactivity caused by stress. Voiding function, sensory nerve activity, and bladder wall remodeling were assessed in C57Bl/6 and TRPV1 knockout mice exposed to intensified social stress, using conscious cystometry, ex vivo afferent nerve recordings, and histology. Intensified social stress increased void volume, intermicturition interval, bladder volume and bladder wall collagen content in C57Bl/6 mice, indicative of bladder wall remodeling and underactive bladder. However, afferent nerve activity was unchanged, and unaffected by the TRPV1 antagonist capsazepine. Interestingly, all indices of bladder function were unchanged in TRPV1 knockout mice in response to social stress, even though corticotrophin releasing hormone expression in Barrington's Nucleus still increased. These results suggest that TRPV1 channels in the periphery are a linchpin in the development of stress-induced bladder dysfunction, both with regard to increased sensory outflow that leads to overactive bladder, and bladder wall decompensation that leads to underactive bladder. TRPV1 channels represent an intriguing target to prevent the development of stress-induced bladder dysfunction in children.
Proceedings of the National Academy of Sciences of the United States of America
2022 Dec 06
Riad, MH;Park, K;Ibañez-Tallon, I;Heintz, N;
PMID: 36442105 | DOI: 10.1073/pnas.2211454119
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com