Immunology and cell biology
Mekhael, O;Revill, SD;Hayat, AI;Cass, SP;MacDonald, K;Vierhout, M;Ayoub, A;Reihani, A;Padwal, M;Imani, J;Ayaub, E;Yousof, T;Dvorkin-Gheva, A;Rullo, A;Hirota, JA;Richards, CD;Bridgewater, D;Stämpfli, MR;Hambly, N;Naqvi, A;Kolb, MR;Ask, K;
PMID: 36862017 | DOI: 10.1111/imcb.12637
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. The accumulation of macrophages is associated with disease pathogenesis. The unfolded protein response (UPR) has been linked to macrophage activation in pulmonary fibrosis. To date, the impact of activating transcription factor 6 alpha (ATF6α), one of the UPR mediators, on the composition and function of pulmonary macrophage subpopulations during lung injury and fibrogenesis is not fully understood. We began by examining the expression of Atf6α in IPF patients' lung single-cell RNA sequencing dataset, archived surgical lung specimens, and CD14+ circulating monocytes. To assess the impact of ATF6α on pulmonary macrophage composition and pro-fibrotic function during tissue remodelling, we conducted an in vivo myeloid-specific deletion of Atf6α. Flow cytometric assessments of pulmonary macrophages were carried out in C57BL/6 and myeloid specific ATF6α-deficient mice in the context of bleomycin-induced lung injury. Our results demonstrated that Atf6α mRNA was expressed in pro-fibrotic macrophages found in IPF patient lung and in CD14+ circulating monocytes obtained from IPF patient blood. After bleomycin administration, the myeloid-specific deletion of Atf6α altered pulmonary macrophage composition, expanding CD11b+ subpopulations with dual polarized CD38+ CD206+ expressing macrophages. Compositional changes were associated with an aggravation of fibrogenesis including increased myofibroblast and collagen deposition. Further mechanistic ex vivo investigation revealed that ATF6α was required for CHOP induction and the death of bone marrow-derived macrophages. Overall, our findings suggest a detrimental role for the ATF6α-deficient CD11b+ macrophages which had altered function during lung injury and fibrosis.This article is protected by
Garcia-Alonso, L;Lorenzi, V;Mazzeo, CI;Alves-Lopes, JP;Roberts, K;Sancho-Serra, C;Engelbert, J;Marečková, M;Gruhn, WH;Botting, RA;Li, T;Crespo, B;van Dongen, S;Kiselev, VY;Prigmore, E;Herbert, M;Moffett, A;Chédotal, A;Bayraktar, OA;Surani, A;Haniffa, M;Vento-Tormo, R;
PMID: 35794482 | DOI: 10.1038/s41586-022-04918-4
Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.
The Journal of clinical investigation
Pan, Y;Cao, S;Tang, J;Arroyo, JP;Terker, AS;Wang, Y;Niu, A;Fan, X;Wang, S;Zhang, Y;Jiang, M;Wasserman, DH;Zhang, MZ;Harris, RC;
PMID: 35499079 | DOI: 10.1172/JCI152391
Obesity-associated complications are causing increasing morbidity and mortality worldwide. Expansion of adipose tissue in obesity leads to a state of low-grade chronic inflammation and dysregulated metabolism, resulting in insulin resistance and metabolic syndrome. Adipose tissue macrophages (ATMs) accumulate in obesity and are a source of proinflammatory cytokines that further aggravate adipocyte dysfunction. Macrophages are rich sources of cyclooxygenase (COX), the rate limiting enzyme for prostaglandin E2 (PGE2) production. When mice were fed a high-fat diet (HFD), ATMs increased expression of COX-2. Selective myeloid cell COX-2 deletion resulted in increased monocyte recruitment and proliferation of ATMs, leading to increased proinflammatory ATMs with decreased phagocytic ability. There were increased weight gain and adiposity, decreased peripheral insulin sensitivity and glucose utilization, increased adipose tissue inflammation and fibrosis, and abnormal adipose tissue angiogenesis. HFD pair-feeding led to similar increases in body weight, but mice with selective myeloid cell COX-2 still exhibited decreased peripheral insulin sensitivity and glucose utilization. Selective myeloid deletion of the macrophage PGE2 receptor subtype, EP4, produced a similar phenotype, and a selective EP4 agonist ameliorated the metabolic abnormalities seen with ATM COX-2 deletion. Therefore, these studies demonstrated that an ATM COX-2/PGE2/EP4 axis plays an important role in inhibiting adipose tissue dysfunction.
Keenan, BP;McCarthy, EE;Ilano, A;Yang, H;Zhang, L;Allaire, K;Fan, Z;Li, T;Lee, DS;Sun, Y;Cheung, A;Luong, D;Chang, H;Chen, B;Marquez, J;Sheldon, B;Kelley, RK;Ye, CJ;Fong, L;
PMID: 36130508 | DOI: 10.1016/j.celrep.2022.111384
Suppressive myeloid cells can contribute to immunotherapy resistance, but their role in response to checkpoint inhibition (CPI) in anti-PD-1 refractory cancers, such as biliary tract cancer (BTC), remains elusive. We use multiplexed single-cell transcriptomic and epitope sequencing to profile greater than 200,000 peripheral blood mononuclear cells from advanced BTC patients (n = 9) and matched healthy donors (n = 8). Following anti-PD-1 treatment, CD14+ monocytes expressing high levels of immunosuppressive cytokines and chemotactic molecules (CD14CTX) increase in the circulation of patients with BTC tumors that are CPI resistant. CD14CTX can directly suppress CD4+ T cells and induce SOCS3 expression in CD4+ T cells, rendering them functionally unresponsive. The CD14CTX gene signature associates with worse survival in patients with BTC as well as in other anti-PD-1 refractory cancers. These results demonstrate that monocytes arising after anti-PD-1 treatment can induce T cell paralysis as a distinct mode of tumor-mediated immunosuppression leading to CPI resistance.
CB1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome
Clinical and translational medicine
Cinar, R;Park, JK;Zawatsky, CN;Coffey, NJ;Bodine, SP;Abdalla, J;Yokoyama, T;Jourdan, T;Jay, L;Zuo, MXG;O'Brien, KJ;Huang, J;Mackie, K;Alimardanov, A;Iyer, MR;Gahl, WA;Kunos, G;Gochuico, BR;Malicdan, MCV;
PMID: 34323400 | DOI: 10.1002/ctm2.471
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Tang, WC;Tsao, SW;Jones, GE;Liu, X;Tsai, MH;Delecluse, HJ;Dai, W;You, C;Zhang, J;Huang, SCM;Leung, MM;Liu, T;Ching, YP;Chen, H;Lo, KW;Li, X;Tsang, CM;
PMID: 36420735 | DOI: 10.1002/path.6036
Invadopodia are actin-rich membrane protrusions that digest the matrix barrier during cancer metastasis. Since the discovery of invadopodia, they were visualized as localized and dot-like structures in different types of cancer cells on top of a 2D matrix. In this investigation of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), a highly invasive cancer frequently accompanied by neck lymph node and distal organ metastases, we revealed a new form of invadopodium with mobilizing features. Integration of live-cell imaging and molecular assays revealed the interaction of macrophage-released TNFα and EBV-encoded latent membrane protein 1 (LMP1) in co-activating the EGFR/Src/ERK/cortactin and Cdc42/N-WASP signaling axes for mobilizing the invadopodia with lateral movements. This phenomenon endows the invadopodia with massive degradative power, visualized as a shift of focal dot-like digestion patterns on a 2D gelatin to a dendrite-like digestion pattern. Notably, single stimulation of either LMP1 or TNFα could only enhance the number of ordinary dot-like invadopodia, suggesting that the EBV infection sensitizes the NPC cells to form mobilizing invadopodia when encountering a TNFα-rich tumor microenvironment. This study unveils the interplay of EBV and stromal components in driving the invasive potential of NPC via unleashing the propulsion of invadopodia in overcoming matrix hurdles. This article is protected by
Pathology - Research and Practice
Schwab, C;Domke, L;Rose, F;Hausser, I;Schirmacher, P;Longerich, T;
| DOI: 10.1016/j.prp.2022.154000
Pulmonary capillary microthrombosis has been proposed as a major pathogenetic factor driving severe COVID-19. Autopsy studies reported endothelialitis but it is under debate if it is caused by SARS-CoV-2 infection of endothelial cells. In this study, RNA in situ hybridization was used to detect viral RNA and to identify the infected cell types in lung tissue of 40 patients with fatal COVID-19. SARS-CoV-2 Spike protein-coding RNA showed a steadily decreasing signal abundance over a period of three weeks. Besides the original virus strain the variants of concern Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) could also be detected by the assay. Viral RNA was mainly detected in alveolar macrophages and pulmonary epithelial cells, while only single virus-positive endothelial cells were observed even in cases with high viral load suggesting that viral infection of endothelial cells is not a key factor for the development of pulmonary capillary microthrombosis.
Bockmayr, M;Harnisch, K;Pohl, L;Schweizer, L;Mohme, T;Körner, M;Alawi, M;Suwala, A;Dorostkar, M;Monoranu, C;Hasselblatt, M;Wefers, A;Capper, D;Hench, J;Frank, S;Richardson, T;Tran, I;Liu, E;Snuderl, M;Engertsberger, L;Benesch, M;von Deimling, A;Obrecht, D;Mynarek, M;Rutkowski, S;Glatzel, M;Neumann, J;Schüller, U;
| DOI: 10.1093/neuonc/noac079.143
Myxopapillary ependymoma (MPE) is a heterogeneous disease regarding histopathology and outcome. The underlying molecular biology is poorly understood, and markers that reliably predict the patients’ clinical course are unknown. We assembled a cohort of 185 tumors classified as MPE based on DNA methylation from pediatric, adolescent, and adult patients. Methylation patterns, copy number profiles, and MGMT promoter methylation were analyzed for all tumors, 106 tumors were evaluated histomorphologically, and RNA sequencing was performed for 37 cases. Based on methylation profiling, we defined two subtypes MPE-A and MPEB, and explored associations with epidemiological, clinical, pathological, and molecular characteristics of these tumors. Tumors in the methylation class MPE were histologically diagnosed as WHO grade I (59%), WHO grade II (37%), or WHO grade III tumors (4%). 75/77 analyzed tumors expressed HOXB13, which is a diagnostic feature not detected in other spinal ependymal tumors. Based on DNA methylation, our series split into two subtypes. MPE-A occurred in younger patients (median age 27 vs. 45 years, p=7.3e-05). They were enriched with WHO grade I tumors and associated with papillary morphology and MGMT promoter hypermethylation (all p<0.001). MPE-B included most tumors initially diagnosed as WHO grade II and cases with tanycytic morphology. Copy number alterations were more common in MPE-A. RNA sequencing revealed an enrichment for extracellular matrix and immune system-related signatures in MPE-A. 15/30 MPE-A could not be totally resected compared to 1/58 MPE-B (p=6.3e-08), and progression-free survival was significantly better for MPE-B (p=3.4e-06, 10-year relapse rate 33% vs. 85%). We unraveled the morphological and clinical heterogeneity of MPE by identifying two molecularly distinct subtypes. These subtypes significantly differed in progression-free survival and will likely need different protocols for surveillance and treatment.
Broeckel, RM;Feldmann, F;McNally, KL;Chiramel, AI;Sturdevant, GL;Leung, JM;Hanley, PW;Lovaglio, J;Rosenke, R;Scott, DP;Saturday, G;Bouamr, F;Rasmussen, AL;Robertson, SJ;Best, SM;
PMID: 34855915 | DOI: 10.1371/journal.ppat.1009678
Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.
Am J Respir Crit Care Med. 2018 Dec 15.
Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV.
PMID: 30554520 | DOI: 10.1164/rccm.201712-2410OC
Abstract RATIONALE: The contributions of diverse cell populations in the human lung to pulmonary fibrosis pathogenesis are poorly understood. Single-cell RNA sequencing can reveal changes within individual cell populations during pulmonary fibrosis that are important for disease pathogenesis. OBJECTIVES: To determine whether single-cell RNA sequencing can reveal disease-related heterogeneity within alveolar macrophages, epithelial cells or other cell types in lung tissue from subjects with pulmonary fibrosis compared with controls. METHODS: We performed single-cell RNA sequencing on lung tissue obtained from eight transplant donors and eight recipients with pulmonary fibrosis and on one bronchoscopic cryobiospy sample from a patient with idiopathic pulmonary fibrosis. We validated these data in using in situ RNA hybridization, immunohistochemistry, and bulk RNA-sequencing on flow-sorted cells from 22 additional subjects. MEASUREMENTS AND MAIN RESULTS: We identified a distinct, novel population of profibrotic alveolar macrophages exclusively in patients with fibrosis. Within epithelial cells, the expression of genes involved in Wnt secretion and response was restricted to non-overlapping cells. We identified rare cell populations including airway stem cells and senescent cells emerging during pulmonary fibrosis. We developed a web-based tool to explore these data. CONCLUSIONS: We generated a single cell atlas of pulmonary fibrosis. Using this atlas we demonstrated heterogeneity within alveolar macrophages and epithelial cells from subjects with pulmonary fibrosis. These results support the feasibility of discovery-based approaches using next generation sequencing technologies to identify signaling pathways for targeting in the development of personalized therapies for patients with pulmonary fibrosis.
He, S;Bhatt, R;Brown, C;Brown, EA;Buhr, DL;Chantranuvatana, K;Danaher, P;Dunaway, D;Garrison, RG;Geiss, G;Gregory, MT;Hoang, ML;Khafizov, R;Killingbeck, EE;Kim, D;Kim, TK;Kim, Y;Klock, A;Korukonda, M;Kutchma, A;Lewis, ZR;Liang, Y;Nelson, JS;Ong, GT;Perillo, EP;Phan, JC;Phan-Everson, T;Piazza, E;Rane, T;Reitz, Z;Rhodes, M;Rosenbloom, A;Ross, D;Sato, H;Wardhani, AW;Williams-Wietzikoski, CA;Wu, L;Beechem, JM;
PMID: 36203011 | DOI: 10.1038/s41587-022-01483-z
Resolving the spatial distribution of RNA and protein in tissues at subcellular resolution is a challenge in the field of spatial biology. We describe spatial molecular imaging, a system that measures RNAs and proteins in intact biological samples at subcellular resolution by performing multiple cycles of nucleic acid hybridization of fluorescent molecular barcodes. We demonstrate that spatial molecular imaging has high sensitivity (one or two copies per cell) and very low error rate (0.0092 false calls per cell) and background (~0.04 counts per cell). The imaging system generates three-dimensional, super-resolution localization of analytes at ~2 million cells per sample. Cell segmentation is morphology based using antibodies, compatible with formalin-fixed, paraffin-embedded samples. We measured multiomic data (980 RNAs and 108 proteins) at subcellular resolution in formalin-fixed, paraffin-embedded tissues (nonsmall cell lung and breast cancer) and identified >18 distinct cell types, ten unique tumor microenvironments and 100 pairwise ligand-receptor interactions. Data on >800,000 single cells and ~260 million transcripts can be accessed at http://nanostring.com/CosMx-dataset .
Lovatt, D;Tamburino, A;Krasowska-Zoladek, A;Sanoja, R;Li, L;Peterson, V;Wang, X;Uslaner, J;
PMID: 36261573 | DOI: 10.1038/s42003-022-03970-0
Patients with peripheral nerve injury, viral infection or metabolic disorder often suffer neuropathic pain due to inadequate pharmacological options for relief. Developing novel therapies has been challenged by incomplete mechanistic understanding of the cellular microenvironment in sensory nerve that trigger the emergence and persistence of pain. In this study, we report a high resolution transcriptomics map of the cellular heterogeneity of naïve and injured rat sensory nerve covering more than 110,000 individual cells. Annotation reveals distinguishing molecular features of multiple major cell types totaling 45 different subtypes in naïve nerve and an additional 23 subtypes emerging after injury. Ligand-receptor analysis revealed a myriad of potential targets for pharmacological intervention. This work forms a comprehensive resource and unprecedented window into the cellular milieu underlying neuropathic pain and demonstrates that nerve injury is a dynamic process orchestrated by multiple cell types in both the endoneurial and epineurial nerve compartments.