Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (4)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • Gad1 (50) Apply Gad1 filter
  • Slc17a6 (32) Apply Slc17a6 filter
  • Sst (31) Apply Sst filter
  • SLC32A1 (29) Apply SLC32A1 filter
  • vGlut2 (29) Apply vGlut2 filter
  • DRD2 (27) Apply DRD2 filter
  • FOS (27) Apply FOS filter
  • Gad2 (27) Apply Gad2 filter
  • egfp (25) Apply egfp filter
  • PVALB (24) Apply PVALB filter
  • Slc17a7 (23) Apply Slc17a7 filter
  • tdTomato (23) Apply tdTomato filter
  • TH (22) Apply TH filter
  • Crh (18) Apply Crh filter
  • VGAT (17) Apply VGAT filter
  • DRD1 (15) Apply DRD1 filter
  • Npy (12) Apply Npy filter
  • VGluT1 (12) Apply VGluT1 filter
  • Cre (12) Apply Cre filter
  • GFP (11) Apply GFP filter
  • CCK (10) Apply CCK filter
  • ESR1 (10) Apply ESR1 filter
  • GFAP (10) Apply GFAP filter
  • AGRP (10) Apply AGRP filter
  • TAC1 (10) Apply TAC1 filter
  • Oxtr (10) Apply Oxtr filter
  • Penk (10) Apply Penk filter
  • Pdyn (10) Apply Pdyn filter
  • Pomc (10) Apply Pomc filter
  • GCG (9) Apply GCG filter
  • Chat (9) Apply Chat filter
  • C-fos (9) Apply C-fos filter
  • TBD (9) Apply TBD filter
  • Lgr5 (8) Apply Lgr5 filter
  • Rbfox3 (7) Apply Rbfox3 filter
  • Mc4r (7) Apply Mc4r filter
  • Prkcd (7) Apply Prkcd filter
  • Aldh1l1 (7) Apply Aldh1l1 filter
  • Bdnf (7) Apply Bdnf filter
  • Calb2 (7) Apply Calb2 filter
  • MBP (7) Apply MBP filter
  • OPRM1 (7) Apply OPRM1 filter
  • Trpv1 (7) Apply Trpv1 filter
  • Nts (7) Apply Nts filter
  • Vip (7) Apply Vip filter
  • Il-6 (7) Apply Il-6 filter
  • SOX2 (6) Apply SOX2 filter
  • GAPDH (6) Apply GAPDH filter
  • CNR1 (6) Apply CNR1 filter
  • GLP1R (6) Apply GLP1R filter

Product

  • (-) Remove RNAscope Fluorescent Multiplex Assay filter RNAscope Fluorescent Multiplex Assay (4)

Research area

  • Neuroscience (4) Apply Neuroscience filter
  • Memory (1) Apply Memory filter

Category

  • Publications (4) Apply Publications filter
Antidepressant response and stress resilience are promoted by CART peptides in GABAergic neurons of the anterior cingulate cortex

Biological Psychiatry Global Open Science

2022 Jan 01

Funayama, Y;Li, H;Ishimori, E;Kawatake-Kuno, A;Inaba, H;Yamagata, H;Seki, T;Nakagawa, S;Watanabe, Y;Murai, T;Oishi, N;Uchida, S;
| DOI: 10.1016/j.bpsgos.2021.12.009

Background A key challenge in the understanding and treatment of depression is identifying cell types and molecular mechanisms that mediate behavioral responses to antidepressant drugs. As treatment responses in clinical depression are heterogeneous, it is crucial to examine treatment responders and nonresponders in preclinical studies. Methods We utilized the large variance in behavioral responses to chronic treatment with multiple class of antidepressant drugs in different inbred mouse strains and classified the mice into responders and nonresponders based on their response in the forced swim test. Medial prefrontal cortex tissues were subjected to RNA sequencing to identify molecules that are consistently associated across antidepressant responders. We developed and employed virus-mediated gene transfer to induce the gene of interest in specific cell types and performed forced swim test, sucrose preference, social interaction, and open field tests to investigate antidepressant-like and anxiety behaviors. Results Cocaine- and amphetamine-regulated transcript peptide (Cartpt) expression was consistently upregulated in responders to four types of antidepressants but not in nonresponders in different mice strains. Responder mice given a single dose of ketamine, a fast-acting non-monoamine-based antidepressant, exhibited high CART peptide expression. CART peptide overexpression in the GABAergic neurons of the anterior cingulate cortex (aCC) led to antidepressant-like behavior and drove chronic stress resiliency independently of mouse genetic background. Conclusions These data demonstrate that activation of CART peptide signaling in GABAergic neurons of the aCC is a common molecular mechanism across antidepressant responders and that this pathway also drives stress resilience.
Antagonistic negative and positive neurons of the basolateral amygdala.

Nat Neurosci.

2016 Oct 17

Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S.
PMID: 27749826 | DOI: 10.1038/nn.4414

The basolateral amygdala (BLA) is a site of convergence of negative and positive stimuli and is critical for emotional behaviors and associations. However, the neural substrate for negative and positive behaviors and relationship between negative and positive representations in the basolateral amygdala are unknown. Here we identify two genetically distinct, spatially segregated populations of excitatory neurons in the mouse BLA that participate in valence-specific behaviors and are connected through mutual inhibition. These results identify a genetically defined neural circuit for the antagonistic control of emotional behaviors and memories.

Inhibitory top-down projections from zona incerta mediate neocortical memory

Neuron

2023 Jan 04

Schroeder, A;Pardi, MB;Keijser, J;Dalmay, T;Groisman, AI;Schuman, EM;Sprekeler, H;Letzkus, JJ;
PMID: 36610397 | DOI: 10.1016/j.neuron.2022.12.010

Top-down projections convey a family of signals encoding previous experiences and current aims to the sensory neocortex, where they converge with external bottom-up information to enable perception and memory. Whereas top-down control has been attributed to excitatory pathways, the existence, connectivity, and information content of inhibitory top-down projections remain elusive. Here, we combine synaptic two-photon calcium imaging, circuit mapping, cortex-dependent learning, and chemogenetics in mice to identify GABAergic afferents from the subthalamic zona incerta as a major source of top-down input to the neocortex. Incertocortical transmission undergoes robust plasticity during learning that improves information transfer and mediates behavioral memory. Unlike excitatory pathways, incertocortical afferents form a disinhibitory circuit that encodes learned top-down relevance in a bidirectional manner where the rapid appearance of negative responses serves as the main driver of changes in stimulus representation. Our results therefore reveal the distinctive contribution of long-range (dis)inhibitory afferents to the computational flexibility of neocortical circuits.
Calcium imaging with genetically encoded indicators in behaving primates.

Elife.

2016 Jul 21

Seidemann E, Chen Y, Bai Y, Chen SC, Mehta P, Kajs BL, Geisler WS, Zemelman BV.
PMID: 27441501 | DOI: 10.7554/eLife.16178

Understanding the neural basis of behaviour requires studying brain activity in behaving subjects using complementary techniques that measure neural responses at multiple spatial scales, and developing computational tools for understanding the mapping between these measurements. Here we report the first results of widefield imaging of genetically encoded calcium indicator (GCaMP6f) signals from V1 of behaving macaques. This technique provides a robust readout of visual population responses at the columnar scale over multiple mm(2) and over several months. To determine the quantitative relation between the widefield GCaMP signals and the locally pooled spiking activity, we developed a computational model that sums the responses of V1 neurons characterized by prior single unit measurements. The measured tuning properties of the GCaMP signals to stimulus contrast, orientation and spatial position closely match the predictions of the model, suggesting that widefield GCaMP signals are linearly related to the summed local spiking activity.

X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?