Ion channel mRNA distribution and expression in the sinoatrial node and right atrium of dogs and monkeys
Journal of Toxicologic Pathology
SANO, T;YASUNO, H;WATANABE, T;
| DOI: 10.1293/tox.2020-0089
There are limited data on the gene expression profiles of ion channels in the sinoatrial node (SAN) of dogs and monkeys. In this study, the messenger RNA (mRNA) expression profiles of various ion channels in the SAN of naïve dogs and monkeys were examined using RNAscope _in situ _hybridization and compared with those in the surrounding right atrium (RA) of each species. Regional-specific Cav1.3 and HCN4 expression was observed in the SAN of dogs and monkeys. Additionally, HCN1 in dogs was only expressed in the SAN group. The expression profiles of Cav3.1 and Cav3.2 in the SAN and RA were completely different between dogs and monkeys. Dog hearts only expressed Cav3.2; however, Cav3.1 was detected only in monkeys, and the expression score in the SAN was slightly higher than that in the RA. Although Kir3.1 and NCX1 in dogs were equally expressed in both the SAN and RA, the expression scores of these genes in the SAN of monkeys were slightly higher than those in the RA. The Kir3.4 expression score in the SAN of dogs and monkeys was also slightly higher than that in the RA. The mRNA expression scores of Kv11.1/ERG and KvLQT1 were equally observed in both the SAN and RA of dogs and monkeys. HCN2 was not detected in dogs and monkeys. In summary, we used RNAscope to demonstrate the SAN-specific gene expression patterns of ion channels, which may be useful in explaining the effect of pacemaking and/or hemodynamic effects in nonclinical studies.
Prost S, Crossan CL, Dalton HR, De Man RA, Kamar N, Selves J, Dhaliwal C, Scobie L, Bellamy COC.
PMID: 28543644 | DOI: 10.1111/his.13266
Abstract
AIMS:
to determine the relative utility of in situ testing for hepatitis E virus (HEV) RNA and paraffin section PCR to diagnose HEV infection in paraffin-embedded clinical liver biopsies, and to correlate with clinico-pathological characteristics.
METHODS AND RESULTS:
We evaluated in situ and quantitative PCR (qPCR)-based approaches to identifying HEV in clinical liver biopsies from infected patients from multiple centers, correlating with clinical setting (immunocompetent, allograft or immunosuppressed native liver) and histologic findings. 36 biopsies from 29 patients had histologic data, of which 27 and 23 biopsies had satisfactory material for in situ RNA testing and tissue qPCR respectively. Both approaches specifically identified HEV infection, but tissue qPCR was significantly more sensitive than in situ testing (P=0.035). In immunocompetent but not immunosuppressed patients the tissue qPCR yield correlated with the severity of lobular hepatitis (rho=0.94, P<0.001). qPCR viral yield was comparably high in allografts and immunosuppressed native livers and significantly greater than with native liver infection. Immunosuppressed patients showed reduced severity of hepatitis and cholestatic changes, compared with immunocompetent patients. Indeed, HEV-infected liver allografts could show minimal hepatitis for many months. In individual cases each technique was useful when serum was not available to retrospectively identify chronic infection (in biopsies taken 4-31 months before diagnosis), to identify persistent/residual infection when contemporary serum PCR was negative and to identify cleared infection.
CONCLUSIONS:
qPCR is better than in situ RNA testing to identify HEV infection in paraffin-embedded liver biopsies and has diagnostic utility in selected settings.
Laboratory investigation; a journal of technical methods and pathology
Hanson, PJ;Liu-Fei, F;Minato, TA;Hossain, AR;Rai, H;Chen, VA;Ng, C;Ask, K;Hirota, JA;McManus, BM;
PMID: 34608239 | DOI: 10.1038/s41374-021-00669-4
The prevalence and contribution of cardiotropic viruses to various expressions of heart failure are increasing, yet primarily underappreciated and underreported due to variable clinical syndromes, a lack of consensus diagnostic standards and insufficient clinical laboratory tools. In this study, we developed an advanced methodology for identifying viruses across a spectrum of heart failure patients. We designed a custom tissue microarray from 78 patients with conditions commonly associated with virus-related heart failure, conditions where viral contribution is typically uncertain, or conditions for which the etiological agent remains suspect but elusive. Subsequently, we employed advanced, highly sensitive in situ hybridization to probe for common cardiotropic viruses: adenovirus 2, coxsackievirus B3, cytomegalovirus, Epstein-Barr virus, hepatitis C and E, influenza B and parvovirus B19. Viral RNA was detected in 46.4% (32/69) of heart failure patients, with 50% of virus-positive samples containing more than one virus. Adenovirus 2 was the most prevalent, detected in 27.5% (19/69) of heart failure patients, while in contrast to previous reports, parvovirus B19 was detected in only 4.3% (3/69). As anticipated, viruses were detected in 77.8% (7/9) of patients with viral myocarditis and 37.5% (6/16) with dilated cardiomyopathy. Additionally, viruses were detected in 50% of patients with coronary artery disease (3/6) and hypertrophic cardiomyopathy (2/4) and in 28.6% (2/7) of transplant rejection cases. We also report for the first time viral detection within a granulomatous lesion of cardiac sarcoidosis and in giant cell myocarditis, conditions for which etiological agents remain unknown. Our study has revealed a higher than anticipated prevalence of cardiotropic viruses within cardiac muscle tissue in a spectrum of heart failure conditions, including those not previously associated with a viral trigger or exacerbating role. Our work forges a path towards a deeper understanding of viruses in heart failure pathogenesis and opens possibilities for personalized patient therapeutic approaches.