Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (114)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • (-) Remove vGlut2 filter vGlut2 (80)
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • (-) Remove CD68 filter CD68 (28)
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (32) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (29) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (21) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (4) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent v2 (4) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.5 HD Brown Assay (2) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope HiPlex v2 assay (2) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Red assay (1) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 VS Assay (1) Apply RNAscope 2.5 VS Assay filter
  • TBD (1) Apply TBD filter

Research area

  • Neuroscience (79) Apply Neuroscience filter
  • Cancer (11) Apply Cancer filter
  • Inflammation (8) Apply Inflammation filter
  • Covid (4) Apply Covid filter
  • Behavior (3) Apply Behavior filter
  • Development (3) Apply Development filter
  • Other: Heart (3) Apply Other: Heart filter
  • Pain (3) Apply Pain filter
  • cellular metabolism (2) Apply cellular metabolism filter
  • CGT (2) Apply CGT filter
  • Infectious (2) Apply Infectious filter
  • Metabolism (2) Apply Metabolism filter
  • Other (2) Apply Other filter
  • Other: calcium channels (2) Apply Other: calcium channels filter
  • Other: Endocrinology (2) Apply Other: Endocrinology filter
  • Parkinson's Disease (2) Apply Parkinson's Disease filter
  • Sleep (2) Apply Sleep filter
  • Allergy (1) Apply Allergy filter
  • Allodynia (1) Apply Allodynia filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Atrial fibrillation (1) Apply Atrial fibrillation filter
  • calcium signaling (1) Apply calcium signaling filter
  • Chronic Itch (1) Apply Chronic Itch filter
  • Depression (1) Apply Depression filter
  • Feeding (1) Apply Feeding filter
  • Fibrosis (1) Apply Fibrosis filter
  • Immunotherapy (1) Apply Immunotherapy filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Locomotion (1) Apply Locomotion filter
  • Lung fibrosis (1) Apply Lung fibrosis filter
  • Neuropathic pain (1) Apply Neuropathic pain filter
  • Nueroscience (1) Apply Nueroscience filter
  • Obesity (1) Apply Obesity filter
  • Other: Anxiety (1) Apply Other: Anxiety filter
  • Other: Apneas (1) Apply Other: Apneas filter
  • Other: Biotehcnology (1) Apply Other: Biotehcnology filter
  • Other: Hypertension (1) Apply Other: Hypertension filter
  • Other: Lung (1) Apply Other: Lung filter
  • Other: Prosocial comforting behavior (1) Apply Other: Prosocial comforting behavior filter
  • Racial Bias (1) Apply Racial Bias filter
  • Sickness Behavior (1) Apply Sickness Behavior filter
  • Skeletal Muscles (1) Apply Skeletal Muscles filter
  • Spatial Biology (1) Apply Spatial Biology filter
  • Spatial Molecular Imaging (1) Apply Spatial Molecular Imaging filter
  • Stem cell (1) Apply Stem cell filter
  • Stress (1) Apply Stress filter
  • T-cell therapies (1) Apply T-cell therapies filter
  • Vocalization (1) Apply Vocalization filter

Category

  • Publications (114) Apply Publications filter
Ion channel mRNA distribution and expression in the sinoatrial node and right atrium of dogs and monkeys

Journal of Toxicologic Pathology

2021 Apr 17

SANO, T;YASUNO, H;WATANABE, T;
| DOI: 10.1293/tox.2020-0089

There are limited data on the gene expression profiles of ion channels in the sinoatrial node (SAN) of dogs and monkeys. In this study, the messenger RNA (mRNA) expression profiles of various ion channels in the SAN of naïve dogs and monkeys were examined using RNAscope _in situ _hybridization and compared with those in the surrounding right atrium (RA) of each species. Regional-specific Cav1.3 and HCN4 expression was observed in the SAN of dogs and monkeys. Additionally, HCN1 in dogs was only expressed in the SAN group. The expression profiles of Cav3.1 and Cav3.2 in the SAN and RA were completely different between dogs and monkeys. Dog hearts only expressed Cav3.2; however, Cav3.1 was detected only in monkeys, and the expression score in the SAN was slightly higher than that in the RA. Although Kir3.1 and NCX1 in dogs were equally expressed in both the SAN and RA, the expression scores of these genes in the SAN of monkeys were slightly higher than those in the RA. The Kir3.4 expression score in the SAN of dogs and monkeys was also slightly higher than that in the RA. The mRNA expression scores of Kv11.1/ERG and KvLQT1 were equally observed in both the SAN and RA of dogs and monkeys. HCN2 was not detected in dogs and monkeys. In summary, we used RNAscope to demonstrate the SAN-specific gene expression patterns of ion channels, which may be useful in explaining the effect of pacemaking and/or hemodynamic effects in nonclinical studies.
Periaqueductal grey and spinal cord pathology contribute to pain in Parkinson's disease

NPJ Parkinson's disease

2023 Apr 26

Buhidma, Y;Hobbs, C;Malcangio, M;Duty, S;
PMID: 37100804 | DOI: 10.1038/s41531-023-00510-3

Pain is a key non-motor feature of Parkinson's disease (PD) that significantly impacts on life quality. The mechanisms underlying chronic pain in PD are poorly understood, hence the lack of effective treatments. Using the 6-hydroxydopamine (6-OHDA) lesioned rat model of PD, we identified reductions in dopaminergic neurons in the periaqueductal grey (PAG) and Met-enkephalin in the dorsal horn of the spinal cord that were validated in human PD tissue samples. Pharmacological activation of D1-like receptors in the PAG, identified as the DRD5+ phenotype located on glutamatergic neurons, alleviated the mechanical hypersensitivity seen in the Parkinsonian model. Downstream activity in serotonergic neurons in the Raphé magnus (RMg) was also reduced in 6-OHDA lesioned rats, as detected by diminished c-FOS positivity. Furthermore, we identified increased pre-aggregate α-synuclein, coupled with elevated activated microglia in the dorsal horn of the spinal cord in those people that experienced PD-related pain in life. Our findings have outlined pathological pathways involved in the manifestation of pain in PD that may present targets for improved analgesia in people with PD.
Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing.

Brain Struct Funct. 2015 Jul 10.

Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB.
PMID: 26159773

Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 + and VGluT2 + transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT + transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Expression of the Transient Receptor Potential Vanilloid 1 ion channel in the supramammillary nucleus and the antidepressant effects of its antagonist AMG9810 in mice

European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology

2023 May 06

Ngoc, KH;Kecskés, A;Kepe, E;Nabi, L;Keeble, J;Borbély, É;Helyes, Z;
PMID: 37156112 | DOI: 10.1016/j.euroneuro.2023.04.017

The Transient Receptor Potential Vanilloid 1 (TRPV1) non-selective cation channel predominantly expressed in primary sensory neurons of the dorsal root and trigeminal ganglia mediates pain and neurogenic inflammation. TRPV1 mRNA and immunoreactivity were described in the central nervous system (CNS), but its precise expression pattern and function have not been clarified. Here we investigated Trpv1 mRNA expression in the mouse brain using ultrasensitive RNAScope in situ hybridization. The role of TRPV1 in anxiety, depression-like behaviors and memory functions was investigated by TRPV1-deficient mice and pharmacological antagonism by AMG9810. Trpv1 mRNA is selectively expressed in the supramammillary nucleus (SuM) co-localized with Vglut2 mRNA, but not with tyrosine hydroxylase immunopositivity demonstrating its presence in glutamatergic, but not dopaminergic neurons. TRPV1-deleted mice exhibited significantly reduced anxiety in the Light-Dark box and depression-like behaviors in the Forced Swim Test, but their performance in the Elevated Plus Maze as well as their spontaneous locomotor activity, memory and learning function in the Radial Arm Maze, Y-maze and Novel Object Recognition test were not different from WTs. AMG9810 (intraperitoneal injection 50 mg/kg) induced anti-depressant, but not anxiolytic effects. It is concluded that TRPV1 in the SuM might have functional relevance in mood regulation and TRPV1 antagonism could be a novel perspective for anti-depressant drugs.
Glutamatergic Neurokinin 3 receptor neurons in the median preoptic nucleus modulate heat-defense pathways in female mice.

Endocrinology

2019 Feb 07

Krajewski-Hall SJ, Miranda Dos Santos F, McMullen NT, Blackmore EM, Rance NE.
PMID: 30753503 | DOI: 10.1210/en.2018-00934

We have proposed that KNDy (kisspeptin/neurokinin B/dynorphin) neurons contribute to hot flushes via projections to neurokinin 3 receptor (NK3R) expressing neurons in the median preoptic nucleus (MnPO). To characterize the thermoregulatory role of MnPO NK3R neurons in female mice, we ablated these neurons using injections of saporin toxin conjugated to a selective NK3R agonist. Loss of MnPO NK3R neurons increased core temperature (TCORE) during the light phase, with frequency distributions indicating a regulated shift in the balance point. The rise in TCORE in ablated mice occurred despite changes in ambient temperature (TAMBIENT) and regardless of estrogen status. We next determined if an acute increase in TAMBIENT or higher TCORE would induce Fos in preoptic EGFP-immunoreactive neurons in Tacr3-EGFP mice. Fos-activation was increased in the MnPO, but there was no induction of Fos in NK3R (EGFP-immunoreactive) neurons. Thus, MnPO NK3R neurons are not activated by warm thermosensors in the skin or viscera and are not warm-sensitive neurons. Finally, RNAscope was used to determine if Tacr3 (NK3R) mRNA was co-expressed with VGLUT2 or VGAT mRNA, markers of glutamatergic or GABAergic neurotransmission, respectively. Interestingly, 94% of NK3R neurons in the MnPO were glutamatergic, whereas in the adjacent MPA, 97% of NK3R neurons were GABAergic. Thus, NK3R neurons in the MnPO are glutamatergic and play a role in reducing TCORE, but they are not activated by warm thermal stimuli (internal or external). These studies suggest that KNDy neurons modulate thermosensory pathways for heat-defense indirectly, via a subpopulation of glutamatergic MnPO neurons that express NK3R.

Renin-a in the Subfornical Organ Plays a Critical Role in the Maintenance of Salt-Sensitive Hypertension

Biomolecules

2022 Aug 24

Cooper, S;Souza, L;Worker, C;Gayban, A;Buller, S;Satou, R;Feng Earley, Y;
| DOI: 10.3390/biom12091169

The brain renin-angiotensin system plays important roles in blood pressure and cardiovascular regulation. There are two isoforms of prorenin in the brain: the classic secreted form (prorenin/sREN) encoded by renin-a, and an intracellular form (icREN) encoded by renin-b. Emerging evidence indicates the importance of renin-b in cardiovascular and metabolic regulation. However, the role of endogenous brain prorenin in the development of salt-sensitive hypertension remains undefined. In this study, we test the hypothesis that renin-a produced locally in the brain contributes to the pathogenesis of hypertension. Using RNAscope, we report for the first time that renin mRNA is expressed in several regions of the brain, including the subfornical organ (SFO), the paraventricular nucleus of the hypothalamus (PVN), and the brainstem, where it is found in glutamatergic, GABAergic, cholinergic, and tyrosine hydroxylase-positive neurons. Notably, we found that renin mRNA was significantly elevated in the SFO and PVN in a mouse model of DOCA-salt-induced hypertension. To examine the functional importance of renin-a in the SFO, we selectively ablated renin-a in the SFO in renin-a-floxed mice using a Cre-lox strategy. Importantly, renin-a ablation in the SFO attenuated the maintenance of DOCA-salt-induced hypertension and improved autonomic function without affecting fluid or sodium intake. Molecularly, ablation of renin-a prevented the DOCA-salt-induced elevation in NADPH oxidase 2 (NOX2) in the SFO without affecting NOX4 or angiotensin II type 1 and 2 receptors. Collectively, our findings demonstrate that endogenous renin-a within the SFO is important for the pathogenesis of salt-sensitive hypertension.
Adenosine A1 Receptor mRNA Expression by Neurons and Glia in the Auditory Forebrain.

Anat Rec (Hoboken).

2018 Oct 12

Hackett TA
PMID: 30315630 | DOI: 10.1002/ar.23907

In the brain, purines such as ATP and adenosine can function as neurotransmitters and co-transmitters, or serve as signals in neuron-glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1 R). In the auditory forebrain, restriction of A1 R-adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1 R-mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1 R transcripts (Adora1), based on co-expression with cell-specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1 R-mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1 R-adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here.

Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice

Front Neuroanat

2019 Mar 08

Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J and Gundlach AL
PMID: 30906254 | DOI: 10.3389/fnana.2019.00030

Relaxin-3 is a highly conserved neuropeptide abundantly expressed in neurons of the nucleus incertus (NI), which project to nodes of the septohippocampal system (SHS) including the medial septum/diagonal band of Broca (MS/DB) and dorsal hippocampus, as well as to limbic circuits. High densities of the Gi/o-protein-coupled receptor for relaxin-3, known as relaxin-family peptide-3 receptor (RXFP3) are expressed throughout the SHS, further suggesting a role for relaxin-3/RXFP3 signaling in modulating learning and memory processes that occur within these networks. Therefore, this study sought to gain further anatomical and functional insights into relaxin-3/RXFP3 signaling in the mouse MS/DB. Using Cre/LoxP recombination methods, we assessed locomotion, exploratory behavior, and spatial learning and long-term reference memory in adult C57BL/6J Rxfp3 (loxP/loxP) mice with targeted depletion of Rxfp3 in the MS/DB. Following prior injection of an AAV((1/2))-Cre-IRES-eGFP vector into the MS/DB to delete/deplete Rxfp3 mRNA/RXFP3 protein, mice tested in a Morris water maze (MWM) displayed an impairment in allocentric spatial learning during acquisition, as well as an impairment in long-term reference memory on probe day. However, RXFP3-depleted and control mice displayed similar motor activity in a locomotor cell and exploratory behavior in a large open-field (LOF) test. A quantitative characterization using multiplex, fluorescent in situ hybridization (ISH) identified a high level of co-localization of Rxfp3 mRNA and vesicular GABA transporter (vGAT) mRNA in MS and DB neurons (~87% and ~95% co-expression, respectively). Rxfp3 mRNA was also detected, to a correspondingly lesser extent, in vesicular glutamate transporter 2 (vGlut2) mRNA-containing neurons in MS and DB (~13% and ~5% co-expression, respectively). Similarly, a qualitative assessment of the MS/DB region, identified Rxfp3 mRNA in neurons that expressed parvalbumin (PV) mRNA (reflecting hippocampally-projecting GABA neurons), whereas choline acetyltransferase mRNA-positive (acetylcholine) neurons lacked Rxfp3 mRNA. These data are consistent with a qualitative immunohistochemical analysis that revealed relaxin-3-immunoreactive nerve fibers in close apposition with PV-immunoreactive neurons in the MS/DB. Together these studies suggest relaxin-3/RXFP3 signaling in the MS/DB plays a role in modulating specific learning and long-term memory associated behaviors in adult mice via effects on GABAergic neuron populations known for their involvement in modulating hippocampal theta rhythm and associated cognitive processes.
Localization of macrophage subtypes and neutrophils in the prostate tumor microenvironment and their association with prostate cancer racial disparities

The Prostate

2022 Aug 16

Maynard, JP;Godwin, TN;Lu, J;Vidal, I;Lotan, TL;De Marzo, AM;Joshu, CE;Sfanos, KS;
PMID: 35971807 | DOI: 10.1002/pros.24424

Black men are two to three times more likely to die from prostate cancer (PCa) than White men. This disparity is due in part to discrepancies in socioeconomic status and access to quality care. Studies also suggest that differences in the prevalence of innate immune cells and heightened function in the tumor microenvironment of Black men may promote PCa aggressiveness.We evaluated the spatial localization of and quantified CD66ce+ neutrophils by immunohistochemistry and CD68+ (pan), CD80+ (M1), and CD163+ (M2) macrophages by RNA in situ hybridization on formalin-fixed paraffin-embedded tissues from organ donor "normal" prostate (n = 9) and radical prostatectomy (n = 38) tissues from Black and White men. Neutrophils were quantified in PCa and matched benign tissues in tissue microarray (TMA) sets comprised of 560 White and 371 Black men. Likewise, macrophages were quantified in TMA sets comprised of tissues from 60 White and 120 Black men. The phosphatase and tensin homolog (PTEN) and ETS transcription factor ERG (ERG) expression status of each TMA PCa case was assessed via immunohistochemistry. Finally, neutrophils and macrophage subsets were assessed in a TMA set comprised of distant metastatic PCa tissues collected at autopsy (n = 6) sampled across multiple sites.CD66ce+ neutrophils were minimal in normal prostates, but were increased in PCa compared to benign tissues, in low grade compared to higher grade PCa, in PCa tissues from White compared to Black men, and in PCa with PTEN loss or ERG positivity. CD163+ macrophages were the predominant macrophage subset in normal organ donor prostate tissues from both Black and White men and were significantly more abundant in organ donor compared to prostatectomy PCa tissues. CD68,+  CD80,+ and CD163+ macrophages were significantly increased in cancer compared to benign tissues and in cancers with ERG positivity. CD68+ and CD163+ macrophages were increased in higher grade cancers compared to low grade cancer and CD80 expression was significantly higher in benign prostatectomy tissues from Black compared to White men.Innate immune cell infiltration is increased in the prostate tumor microenvironment of both Black and White men, however the composition of innate immune cell infiltration may vary between races.
CB1 Receptor Activation on VgluT2-Expressing Glutamatergic Neurons Underlies Δ9-Tetrahydrocannabinol (Δ9-THC)-Induced Aversive Effects in Mice

Sci Rep.

2017 Sep 26

Han X, He Y, Bi GH, Zhang HY, Song R, Liu QR, Egan JM, Gardner EL, Li J, Xi ZX.
PMID: 28951549 | DOI: 10.1038/s41598-017-12399-z

Cannabis can be rewarding or aversive. Cannabis reward is believed to be mediated by activation of cannabinoid CB1 receptors (CB1Rs) on GABAergic neurons that disinhibit dopaminergic neurons in the ventral tegmental area (VTA). However, little is known about the mechanisms underlying cannabis aversion in rodents. In the present study, CB1Rs are found not only on VTA GABAergic neurons, but also on VTA glutamatergic neurons that express vesicular glutamate transporter 2 (VgluT2). We then used Cre-Loxp transgenic technology to selectively delete CB1Rs in VgluT2-expressing glutamatergic neurons (VgluT2-CB1 -/-) and Cre-dependent viral vector to express light-sensitive channelrhodopsin-2 into VTA glutamatergic neurons. We found that photoactivation of VTA glutamatergic neurons produced robust intracranial self-stimulation (ICSS) behavior, which was dose-dependently blocked by DA receptor antagonists, but enhanced by cocaine. In contrast, Δ9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component of cannabis, produced dose-dependent conditioned place aversion and a reduction in the above optical ICSS in VgluT2-cre control mice, but not in VgluT2-CB1 -/- mice. These findings suggest that activation of CB1Rs in VgluT2-expressing glutamate neurons produces aversive effects that might explain why cannabinoid is not rewarding in rodents and might also account for individual differences in the hedonic effects of cannabis in humans.

Cannabinoid CB2 receptors are expressed in glutamate neurons in the red nucleus and functionally modulate motor behavior in mice

Neuropharmacology

2021 Mar 28

Zhang, HY;Shen, H;Gao, M;Ma, Z;Hempel, B;Bi, GH;Gardner, EL;Wu, J;Xi, ZX;
PMID: 33789118 | DOI: 10.1016/j.neuropharm.2021.108538

Cannabinoids produce a number of central nervous system effects via the CB2 receptor (CB2R), including analgesia, antianxiety, anti-reward, hypoactivity and attenuation of opioid-induced respiratory depression. However, the cellular distributions of the CB2Rs in the brain remain unclear. We have reported that CB2Rs are expressed in midbrain dopamine (DA) neurons and functionally regulate DA-mediated behavior(s). Unexpectedly, high densities of CB2-like signaling were also found in a neighboring motor structure - the red nucleus (RN) of the midbrain. In the present study, we systematically explored CB2R expression and function in the RN. Immunohistochemistry and in situ hybridization assays showed high densities of CB2R-immunostaining and mRNA signal in RN magnocellular glutamate neurons in wildtype and CB1-knockout, but not CB2-knockout, mice. Ex vivo electrophysiological recordings in midbrain slices demonstrated that CB2R activation by JWH133 dose-dependently inhibited firing rates of RN magnocellular neurons in wildtype, but not CB2-knockout, mice, while having no effect on RN GABA neurons in transgenic GAD67-GFP reporter mice, suggesting CB2-mediated effects on glutamatergic neurons. In addition, microinjection of JWH133 into the RN produced robust ipsilateral rotations in wildtype, but not CB2-knockout mice, which was blocked by pretreatment with either a CB2 or DA D1 or D2 receptor antagonist, suggesting a DA-dependent effect. Finally, fluorescent tract tracing revealed glutamatergic projections from the RN to multiple brain areas including the ventral tegmental area, nucleus accumbens, thalamus, and cerebellum. These findings suggest that CB2Rs in RN glutamate neurons functionally modulate motor activity, and therefore, constitute a new target in cannabis-based medication development for motor disorders.
Cell selectivity in succinate receptor SUCNR1/GPR91 signaling in skeletal muscle

American journal of physiology. Endocrinology and metabolism

2023 Feb 22

Abdelmoez, AM;Dmytriyeva, O;Zurke, YX;Trauelsen, M;Marica, AA;Savikj, M;Smith, JAB;Monaco, C;Schwartz, TW;Krook, A;Pillon, NJ;
PMID: 36812387 | DOI: 10.1152/ajpendo.00009.2023

Succinate is released by skeletal muscle during exercise and activates SUCNR1/GPR91. Signaling of SUCNR1 is involved in metabolite-sensing paracrine communication in skeletal muscle during exercise. However, the specific cell types responding to succinate and the directionality of communication are unclear. We aim to characterize the expression of SUCNR1 in human skeletal muscle. De novo analysis of transcriptomic datasets demonstrated that SUCNR1 mRNA is expressed in immune, adipose, and liver tissues, but scarce in skeletal muscle. In human tissues, SUCNR1 mRNA was associated with macrophage markers. Single-cell RNA sequencing and fluorescent RNAscope demonstrated that in human skeletal muscle, SUCNR1 mRNA is not expressed in muscle fibers but coincided with macrophage populations. Human M2-polarized macrophages exhibit high levels of SUCNR1 mRNA and stimulation with selective agonists of SUCNR1 triggered Gq- and Gi-coupled signaling. Primary human skeletal muscle cells were unresponsive to SUCNR1 agonists. In conclusion, SUCNR1 is not expressed in muscle cells and its role in the adaptive response of skeletal muscle to exercise is most likely mediated via paracrine mechanisms involving M2-like macrophages within the muscle.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?