Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (15)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (6) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (5) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (1) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (1) Apply RNAscope 2.5 HD Duplex filter

Research area

  • Development (3) Apply Development filter
  • Cancer (2) Apply Cancer filter
  • cellular metabolism (2) Apply cellular metabolism filter
  • Other: calcium channels (2) Apply Other: calcium channels filter
  • Other: Heart (2) Apply Other: Heart filter
  • Allergies (1) Apply Allergies filter
  • Atrial fibrillation (1) Apply Atrial fibrillation filter
  • Behavior (1) Apply Behavior filter
  • calcium signaling (1) Apply calcium signaling filter
  • Covid (1) Apply Covid filter
  • Immunology (1) Apply Immunology filter
  • Infectious (1) Apply Infectious filter
  • Infectious Disease: Norovirus (1) Apply Infectious Disease: Norovirus filter
  • Inflammation (1) Apply Inflammation filter
  • Injury (1) Apply Injury filter
  • Liver (1) Apply Liver filter
  • Neuroscience (1) Apply Neuroscience filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Regeneration (1) Apply Regeneration filter
  • Stem Cells (1) Apply Stem Cells filter

Category

  • Publications (15) Apply Publications filter
Ion channel mRNA distribution and expression in the sinoatrial node and right atrium of dogs and monkeys

Journal of Toxicologic Pathology

2021 Apr 17

SANO, T;YASUNO, H;WATANABE, T;
| DOI: 10.1293/tox.2020-0089

There are limited data on the gene expression profiles of ion channels in the sinoatrial node (SAN) of dogs and monkeys. In this study, the messenger RNA (mRNA) expression profiles of various ion channels in the SAN of naïve dogs and monkeys were examined using RNAscope _in situ _hybridization and compared with those in the surrounding right atrium (RA) of each species. Regional-specific Cav1.3 and HCN4 expression was observed in the SAN of dogs and monkeys. Additionally, HCN1 in dogs was only expressed in the SAN group. The expression profiles of Cav3.1 and Cav3.2 in the SAN and RA were completely different between dogs and monkeys. Dog hearts only expressed Cav3.2; however, Cav3.1 was detected only in monkeys, and the expression score in the SAN was slightly higher than that in the RA. Although Kir3.1 and NCX1 in dogs were equally expressed in both the SAN and RA, the expression scores of these genes in the SAN of monkeys were slightly higher than those in the RA. The Kir3.4 expression score in the SAN of dogs and monkeys was also slightly higher than that in the RA. The mRNA expression scores of Kv11.1/ERG and KvLQT1 were equally observed in both the SAN and RA of dogs and monkeys. HCN2 was not detected in dogs and monkeys. In summary, we used RNAscope to demonstrate the SAN-specific gene expression patterns of ion channels, which may be useful in explaining the effect of pacemaking and/or hemodynamic effects in nonclinical studies.
Heart failure (HF) alters distribution and spatial association profiles of calmodulin (CaM) and CaM target protein mRNAs

Biophysical Journal

2023 Feb 01

Bogdanov, V;Soltisz, A;Beard, C;Hernandez Orengo, B;Sakuta, G;Veeraraghavan, R;Davis, J;Gyorke, S;
| DOI: 10.1016/j.bpj.2022.11.1389

Aberrant Ca-CaM signaling has been implicated in various congenital and acquired cardiac pathologies, including arrhythmia, hypertrophy, and HF. We examined the impact of HF induced by trans-aortic constriction (TAC) on the distribution of the three CaM mRNAs (Calm 1,2 and 3) and their key protein target mRNAs (Ryr2, Scn5a, Camk2d, NOS1 and Cacna1c) in cardiomyocytes, using fluorescence in situ hybridization (RNAScope™). HF resulted in specific changes in the pattern of localization of Calms, manifested in redistribution of Calm3 from the cell periphery towards the perinuclear area and enhanced Calm2 attraction to the perinuclear area compared to sham myocytes. Additionally, HF resulted in redistribution of mRNAs for certain CaM target mRNAs. Particularly, NOS1 localization shifted from the cell periphery towards the perinuclear area, Cacna1c, Camk2d and Scn5a abundance increased at the perinuclear area, and Ryr2 attracted even closer to the cell periphery in HF myocytes compared to sham myocytes. The strength of non-random attraction/repulsion was measured as the maximal deviation between the observed distribution of nearest neighbor distances from the distribution predicted under complete spatial randomness. Consistent with the observed alterations in abundance and distribution of CaM and CaM target mRNAs, HF resulted in increased attraction between Calm1 and Scn5a, Ryr2 and Camk2d, between Calm2 and Ryr2 and Camk2d; and between Calm3 and NOS1 and Scn5a. In contrast, the attraction between Calm3 and Ryr2 decreased in HF myocytes compared to sham. Collectively, these results suggest distribution of Calms and their association with key target protein mRNAs undergo substantial alterations in heart failure. These results have new important implications for organization of Ca signaling in normal and diseased heart.
Tumor-stroma TGF-β1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin αvβ3/CD36-mediated activation of the MAPK pathway

Cancer letters

2021 Dec 24

Nan, P;Dong, X;Bai, X;Lu, H;Liu, F;Sun, Y;Zhao, X;
PMID: 34958892 | DOI: 10.1016/j.canlet.2021.12.025

The pancreatic ductal adenocarcinoma (PDAC) microenvironment contains dense desmoplastic stroma dominated by cancer-associated fibroblasts (CAFs) and is crucial to cancer development and progression. Several studies have revealed that thrombospondin 2 (THBS2) is a valuable serological-marker in PDAC. However, the detailed mechanism of the cancer-stroma interactome remains unclear. Here we showed that elevated THBS2 expression in PDAC was predominantly restricted to stroma and correlated with tumor progression and poor prognosis by quantitative proteomics and immunohistochemistry analyses. RNA in situ hybridization confirmed that CAFs but not neoplastic cells expressed THBS2 in precancerous lesions and its levels gradually increased with disease progression in genetically engineered mouse models. Mechanistically, cancer cell-secreted TGF-β1 activated CAFs to induce THBS2 expression via the p-Smad2/3 pathway. Consequently, CAF-derived THBS2 bound to the membrane receptors integrin αvβ3/CD36 and activated the MAPK pathway in PDAC cells to promote tumor growth and adhesion in vitro and in vivo. Inhibition of integrin αvβ3, CD36, MEK and JNK rescued THBS2-induced malignant phenotypes. In conclusion, the TGF-β1-THBS2-integrin αvβ3/CD36-MAPK cascade forms a complex feedback circuit to mediate reciprocal interactions of pancreatic cancer cells-CAFs. THBS2 may act as a novel therapeutic-target to block the cancer-stroma communication.
Microbial exposure during early human development primes fetal immune cells

Cell

2021 May 25

Mishra, A;Lai, GC;Yao, LJ;Aung, TT;Shental, N;Rotter-Maskowitz, A;Shepherdson, E;Singh, GSN;Pai, R;Shanti, A;Wong, RMM;Lee, A;Khyriem, C;Dutertre, CA;Chakarov, S;Srinivasan, KG;Shadan, NB;Zhang, XM;Khalilnezhad, S;Cottier, F;Tan, ASM;Low, G;Chen, P;Fan, Y;Hor, PX;Lee, AKM;Choolani, M;Vermijlen, D;Sharma, A;Fuks, G;Straussman, R;Pavelka, N;Malleret, B;McGovern, N;Albani, S;Chan, JKY;Ginhoux, F;
PMID: 34077752 | DOI: 10.1016/j.cell.2021.04.039

The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth. Crown
Single-Cell RNA-seq Reveals Angiotensin-Converting Enzyme 2 and Transmembrane Serine Protease 2 Expression in TROP2+ Liver Progenitor Cells: Implications in Coronavirus Disease 2019-Associated Liver Dysfunction

Frontiers in medicine

2021 Apr 22

Seow, JJW;Pai, R;Mishra, A;Shepherdson, E;Lim, TKH;Goh, BKP;Chan, JKY;Chow, PKH;Ginhoux, F;DasGupta, R;Sharma, A;
PMID: 33968947 | DOI: 10.3389/fmed.2021.603374

The recent coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2. COVID-19 was first reported in China (December 2019) and is now prevalent across the globe. Entry of severe acute respiratory syndrome coronavirus 2 into mammalian cells requires the binding of viral Spike (S) proteins to the angiotensin-converting enzyme 2 receptor. Once entered, the S protein is primed by a specialized serine protease, transmembrane serine protease 2 in the host cell. Importantly, besides the respiratory symptoms that are consistent with other common respiratory virus infections when patients become viremic, a significant number of COVID-19 patients also develop liver comorbidities. We explored whether a specific target cell-type in the mammalian liver could be implicated in disease pathophysiology other than the general deleterious response to cytokine storms. Here, we used single-cell RNA-seq to survey the human liver and identified potentially implicated liver cell-type for viral ingress. We analyzed ~300,000 single cells across five different (i.e., human fetal, healthy, cirrhotic, tumor, and adjacent normal) liver tissue types. This study reports on the co-expression of angiotensin-converting enzyme 2 and transmembrane serine protease 2 in a TROP2+ liver progenitor population. Importantly, we detected enrichment of this cell population in the cirrhotic liver when compared with tumor tissue. These results indicated that in COVID-19-associated liver dysfunction and cell death, a viral infection of TROP2+ progenitors in the liver might significantly impair liver regeneration in patients with liver cirrhosis.
Age-associated features of norovirus infection analysed in mice

Nature microbiology

2023 May 15

Kennedy, EA;Aggarwal, S;Dhar, A;Karst, SM;Wilen, CB;Baldridge, MT;
PMID: 37188813 | DOI: 10.1038/s41564-023-01383-1

Norovirus (NoV) is the leading global cause of viral gastroenteritis. Young children bear the highest burden of disease and play a key role in viral transmission throughout the population. However, which host factors contribute to age-associated variability in NoV severity and shedding are not well-defined. The murine NoV (MNoV) strain CR6 causes persistent infection in adult mice and targets intestinal tuft cells. Here we find that natural transmission of CR6 from infected dams occurred only in juvenile mice. Direct oral CR6 inoculation of wild-type neonatal mice led to accumulation of viral RNA in the ileum and prolonged shedding in the stool that was replication-independent. This viral exposure induced both innate and adaptive immune responses including interferon-stimulated gene expression and MNoV-specific antibody responses. Interestingly, viral uptake depended on passive ileal absorption of luminal virus, a process blocked by cortisone acetate administration, which prevented ileal viral RNA accumulation. Neonates lacking interferon signalling in haematopoietic cells were susceptible to productive infection, viral dissemination and lethality, which depended on the canonical MNoV receptor CD300LF. Together, our findings reveal developmentally associated aspects of persistent MNoV infection, including distinct tissue and cellular tropism, mechanisms of interferon regulation and severity of infection in the absence of interferon signalling. These emphasize the importance of defining viral pathogenesis phenotypes across the developmental spectrum and highlight passive viral uptake as an important contributor to enteric infections in early life.
Genetic silencing of striatal CaV1.3 prevents and ameliorates levodopa dyskinesia.

Mov Disord.

2019 Apr 19

Steece-Collier K, Stancati JA, Collier NJ, Sandoval IM, Mercado NM, Sortwell CE, Collier TJ, Manfredsson FP.
PMID: 31002755 | DOI: 10.1002/mds.27695

Abstract

BACKGROUND:

Levodopa-induced dyskinesias are an often debilitating side effect of levodopa therapy in Parkinson's disease. Although up to 90% of individuals with PD develop this side effect, uniformly effective and well-tolerated antidyskinetic treatment remains a significant unmet need. The pathognomonic loss of striatal dopamine in PD results in dysregulation and disinhibition of striatal CaV1.3 calcium channels, leading to synaptopathology that appears to be involved in levodopa-induced dyskinesias. Although there are clinically available drugs that can inhibit CaV1.3 channels, they are not adequately potent and have only partial and transient impact on levodopa-induced dyskinesias.

METHODS:

To provide unequivocal target validation, free of pharmacological limitations, we developed a CaV1.3 shRNA to provide high-potency, target-selective, mRNA-level silencing of striatal CaV1.3 channels and examined its ability to impact levodopa-induced dyskinesias in severely parkinsonian rats.

RESULTS:

We demonstrate that vector-mediated silencing of striatal CaV1.3 expression in severely parkinsonian rats prior to the introduction of levodopa can uniformly and completely prevent induction of levodopa-induced dyskinesias, and this antidyskinetic benefit persists long term and with high-dose levodopa. In addition, this approach is capable of ameliorating preexisting severe levodopa-induced dyskinesias. Importantly, motoric responses to low-dose levodopa remained intact in the presence of striatal CaV1.3 silencing, indicating preservation of levodopa benefit without dyskinesia liability.

DISCUSSION:

The current data provide some of the most profound antidyskinetic benefit reported to date and suggest that genetic silencing of striatal CaV1.3 channels has the potential to transform treatment of individuals with PD by allowing maintenance of motor benefit of levodopa in the absence of the debilitating levodopa-induced dyskinesia side effect.

Caveolae-restricted mechano-chemical signal transduction in mouse atrial myocytes

Biophysical Journal

2023 Feb 01

Medvedev, R;Turner, D;Gorelik, J;Alvarado, F;Bondarenko, V;Glukhov, A;
| DOI: 10.1016/j.bpj.2022.11.1392

Atrial fibrillation (AF) is commonly observed in patients with hypertension and is associated with pathologically elevated cardiomyocyte stretch. AF triggers have been linked to subcellular Ca2+ abnormalities, while their association with stretch remains elusive. Caveolae are mechanosensitive membrane structures, that play a role in both Ca2+ and cyclic adenosine monophosphate (cAMP) signaling. Therefore, caveolae could provide a mechanistic connection between cardiomyocyte stretch, Ca2+ mishandling, and AF. In isolated mouse atrial myocytes, cell stretch was mimicked by hypotonic swelling, which increased cell width (by ∼30%, p
Single-cell roadmap of human gonadal development

Nature

2022 Jul 01

Garcia-Alonso, L;Lorenzi, V;Mazzeo, CI;Alves-Lopes, JP;Roberts, K;Sancho-Serra, C;Engelbert, J;Marečková, M;Gruhn, WH;Botting, RA;Li, T;Crespo, B;van Dongen, S;Kiselev, VY;Prigmore, E;Herbert, M;Moffett, A;Chédotal, A;Bayraktar, OA;Surani, A;Haniffa, M;Vento-Tormo, R;
PMID: 35794482 | DOI: 10.1038/s41586-022-04918-4

Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.
An integrate-and-fire approach to Ca2+ signaling—The noise of puffs

Biophysical Journal

2023 Feb 01

Ramlow, L;Falcke, M;Lindner, B;
| DOI: 10.1016/j.bpj.2022.11.1390

Stochastic spiking is a prominent feature of Ca2+ signaling. The main noise source at the cellular level are puffs from inositol-trisphosphate receptor (IP3R) channel clusters in the membrane of the endoplasmic reticulum (ER). While the random cluster activity has been known for decades, a stringent method to derive the puff noise term acting on the cytosolic Ca2+ concentration is still lacking. We adopt a popular description of neural spike generation from neuroscience, the stochastic integrate-and-fire (IF) model, to describe Ca2+ spiking. Our model consists of two components describing i) activity of IP3R clusters and ii) dynamics of the global Ca2+ concentrations in the cytosol and in the ER. Cluster activity is modeled by a Markov chain, capturing the puff. The global Ca2+ concentrations are described by a two-variable IF model driven by the puff current. For the Markov chain we derive expressions for the statistics of interpuff interval, single-puff strength, and puff current assuming constant cytosolic Ca2+, an assumption often well met because the Ca2+ concentrations vary much slower than the cluster activity does. The latter assumption also allows to approximate the driving Ca2+ dependent puff current by a white Gaussian noise. This approximation results in an IF model with nonlinear drift and multiplicative noise. We consider this reduced model in a renewal version and in a version with cumulative refractoriness. Neglecting ER depletion, the stochastic IF model has only one variable and generates a renewal spike train, a point process with statistically independent interspike intervals (ISI). We derive analytical expressions for the mean and coefficient of variation of the ISI and suggest approximations for the ISI density and spike-train power spectrum. Taking into account ER depletion, the two-variable IF model displays cumulative refractoriness as seen in experimental data.
Immune sensing of food allergens promotes aversive behaviour

bioRxiv : the preprint server for biology

2023 Jan 20

Florsheim, EB;Bachtel, ND;Cullen, J;Lima, BGC;Godazgar, M;Zhang, C;Carvalho, F;Gautier, G;Launay, P;Wang, A;Dietrich, MO;Medzhitov, R;
PMID: 36712030 | DOI: 10.1101/2023.01.19.524823

In addition to its canonical function in protecting from pathogens, the immune system can also promote behavioural alterations 1â€"3 . The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Using a mouse food allergy model, here we show that allergic sensitization drives antigen-specific behavioural aversion. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus, and central amygdala. Food aversion requires IgE antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote aversion requires leukotrienes and growth and differentiation factor 15 (GDF15). In addition to allergen-induced aversion, we find that lipopolysaccharide-induced inflammation also resulted in IgE-dependent aversive behaviour. These findings thus point to antigen-specific behavioural modifications that likely evolved to promote niche selection to avoid unfavourable environments.
Identification of a rare Gli1+ progenitor cell population contributing to liver regeneration during chronic injury

Cell discovery

2022 Nov 01

Peng, J;Li, F;Wang, J;Wang, C;Jiang, Y;Liu, B;He, J;Yuan, K;Pan, C;Lin, M;Zhou, B;Chen, L;Gao, D;Zhao, Y;
PMID: 36316325 | DOI: 10.1038/s41421-022-00474-3

In adults, hepatocytes are mainly replenished from the existing progenitor pools of hepatocytes and cholangiocytes during chronic liver injury. However, it is unclear whether other cell types in addition to classical hepatocytes and cholangiocytes contribute to hepatocyte regeneration after chronic liver injuries. Here, we identified a new biphenotypic cell population that contributes to hepatocyte regeneration during chronic liver injuries. We found that a cell population expressed Gli1 and EpCAM (EpCAM+Gli1+), which was further characterized with both epithelial and mesenchymal identities by single-cell RNA sequencing. Genetic lineage tracing using dual recombinases revealed that Gli1+ nonhepatocyte cell population could generate hepatocytes after chronic liver injury. EpCAM+Gli1+ cells exhibited a greater capacity for organoid formation with functional hepatocytes in vitro and liver regeneration upon transplantation in vivo. Collectively, these findings demonstrate that EpCAM+Gli1+ cells can serve as a new source of liver progenitor cells and contribute to liver repair and regeneration.

Pages

  • 1
  • 2
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?