Investigative Ophthalmology & Visual Science
Yang, H;Yuan, M;Gaurang, P;Sun, A;
RESULTS : In rodent eye (both rat and mouse), CFH mRNA is strongly expressed in the retinal pigment epithelium with some expression also found in inner nuclear (INL) and retinal ganglion cell (RGC) layers of the retina. C3 mRNA is expressed mainly in RGC, INL of retina, ciliary body, corneal epithelium with some expression is also found in rodent retinal pigment epithelium layer. However, in human eye, CFH and C3 mRNA are strongly expressed in the choroid. Some expression is also found in RGC, INL layer of retina, ONH, sclera, cornea endothelial and stroma; and ciliary body. There is no C3 or CFH signal detected in RPE cells.
Fan, W;Huang, W;Chen, J;Li, N;Mao, L;Hou, S;
PMID: 35403700 | DOI: 10.1111/imm.13479
Microglia, the resident immune cells in the retina and nervous system, make irreplaceable contributions to the maintenance of normal homeostasis and immune surveillance of these systems. Recently, great progress has been made in determining the origin, distribution, features and functions of retinal microglia and in identifying their roles in retinal diseases. In the retinal microenvironment, microglia constantly monitor changes in their surroundings and maintain balanced functions by communicating with other retinal cells. When disturbed, activated microglia may kill degenerated neurons and photoreceptors through phagocytosis and exacerbate retinal injury by producing multiple proinflammatory mediators. Numerous animal studies and in situ analyses of human tissue have shown that retinal microglia are involved in multiple retinal diseases. The functions and mechanisms of activated microglia in retinal disorders are gradually being elucidated. Increasing evidence points towards the dual roles of microglia in the retina and they are regulated by many factors. How to inhibit the detrimental effects of microglia and promote beneficial effects are worth studying. This review focuses primarily on the features and functions of microglia and how they participate in retinal diseases based on existing research findings. We also discuss current opinions about microglial transdifferentiation.
Brain : a journal of neurology
Wlaschin, JJ;Donahue, C;Gluski, J;Osborne, JF;Ramos, LM;Silberberg, H;Le Pichon, CE;
PMID: 36342754 | DOI: 10.1093/brain/awac415
Amyotrophic lateral sclerosis or ALS is a devastating and fatal neurodegenerative disease of motor neurons with very few treatment options. We had previously found that motor neuron degeneration in a mouse model of ALS can be delayed by deleting the axon damage sensor MAP3K12 or Dual Leucine Zipper Kinase (DLK)1. However, DLK is also involved in axon regeneration2-5, prompting us to ask whether combining DLK deletion with a way to promote axon regeneration would result in greater motor neuron protection. To achieve this, we used a mouse line that constitutively expresses ATF3, a master regulator of regeneration in neurons6,7. Although there is precedence for each individual strategy in the SOD1G93A mouse model of ALS1,8, these have not previously been combined. By several lines of evidence including motor neuron electrophysiology, histology and behavior, we observed a powerful synergy when combining DLK deletion with ATF3 expression. The combinatorial strategy resulted in significant protection of motor neurons with fewer undergoing cell death, reduced axon degeneration, and preservation of motor function and connectivity to muscle. This study provides a demonstration of the power of combinatorial therapy to treat neurodegenerative disease.
Marfull-Oromí, P;Onishi, K;Zou, Y;
PMID: 36191829 | DOI: 10.1016/j.neuroscience.2022.09.018
The Planar cell polarity (PCP) pathway is known to mediate the function of the Wnt proteins in growth cone guidance. Here, we show that the PCP pathway may directly influence local protein synthesis within the growth cones. We found that FMRP interacts with Fzd3. This interaction is negatively regulated by Wnt5a, which induces FMRP phosphorylation. Knocking down FMRP via electroporating shRNAs into the dorsal spinal cord lead to a randomization of anterior-posterior turning of commissural axons, which could be rescued by a FMRP rescue construct. Using RNAscope, we found that some of the FMRP target mRNAs encoding PCP components, PRICKLE2 and Celsr2, as well as regulators of cytoskeletal dynamics and components of cytoskeleton, APC, Cfl1, Map1b, Tubb3 and Actb, are present in the commissural neuron growth cones. Our results suggest that PCP signaling may regulate growth cone guidance, at least in part, by regulating local protein synthesis in the growth cones through via an interaction between Frizzled3 and FMRP.
ACS Applied Polymer Materials
Forgham, H;Zhu, J;Qiao, R;Davis, T;
| DOI: 10.1021/acsapm.2c01291
Star polymers are structures composed of multiple functional linear arms covalently connected through a central core. The unique conformation of star polymers, with their tunable side arms and architectural plasticity, makes them well equipped to deliver pharmaceutical drugs and biologicals (peptides, nucleic acids), and design imaging agents. A great deal has been reported on the design and synthesis of star polymers, with several studies demonstrating the possibility for future translation. In this work, we have for the first time performed a review on research published over the last 5-years, focused on the translation of star polymer nanoparticles toward therapeutic application. We discuss all the important potential translational breakthroughs in the field as well as offering a perspective on how the addition of cutting-edge in vitro and in vivo models could provide us with the tools for the successful future clinical translation of star polymer nanoparticles.
Brain : a journal of neurology
Lee, MH;Perl, DP;Steiner, J;Pasternack, N;Li, W;Maric, D;Safavi, F;Horkayne-Szakaly, I;Jones, R;Stram, MN;Moncur, JT;Hefti, M;Folkerth, RD;Nath, A;
PMID: 35788639 | DOI: 10.1093/brain/awac151
The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms. In this autopsy study of the brain, we characterized the vascular pathology, the neuroinflammatory changes and cellular and humoral immune responses by immunohistochemistry. All patients died during the first wave of the pandemic from March to July 2020. All patients were adults who died after a short duration of the infection, some had died suddenly with minimal respiratory involvement. Infection with SARS-CoV-2 was confirmed on ante-mortem or post-mortem testing. Descriptive analysis of the pathological changes and quantitative analyses of the infiltrates and vascular changes were performed. All patients had multifocal vascular damage as determined by leakage of serum proteins into the brain parenchyma. This was accompanied by widespread endothelial cell activation. Platelet aggregates and microthrombi were found adherent to the endothelial cells along vascular lumina. Immune complexes with activation of the classical complement pathway were found on the endothelial cells and platelets. Perivascular infiltrates consisted of predominantly macrophages and some CD8+ T cells. Only rare CD4+ T cells and CD20+ B cells were present. Astrogliosis was also prominent in the perivascular regions. Microglial nodules were predominant in the hindbrain, which were associated with focal neuronal loss and neuronophagia. Antibody-mediated cytotoxicity directed against the endothelial cells is the most likely initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury. Therapeutic modalities directed against immune complexes should be considered.
Hurley, EM;Mozolewski, P;Dobrowolski, R;Hsieh, J;
PMID: 37352850 | DOI: 10.1016/j.stemcr.2023.05.018
Alzheimer's disease (AD) is the most common neurodegenerative disorder, but its root cause may lie in neurodevelopment. PSEN1 mutations cause the majority of familial AD, potentially by disrupting proper Notch signaling, causing early unnoticed cellular changes that affect later AD progression. While rodent models are useful for modeling later stages of AD, human induced pluripotent stem cell-derived cortical spheroids (hCSs) allow access to studying the human cortex at the cellular level over the course of development. Here, we show that the PSEN1 L435F heterozygous mutation affects hCS development, increasing size, increasing progenitors, and decreasing post-mitotic neurons as a result of increased Notch target gene expression during early hCS development. We also show altered Aβ expression and neuronal activity at later hCS stages. These results contrast previous findings, showing how individual PSEN1 mutations may differentially affect neurodevelopment and may give insight into fAD progression to provide earlier time points for more effective treatments.