ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nat Commun.
2018 Aug 13
Ralvenius WT, Neumann E, Pagani M, Acuña MA, Wildner H, Benke D, Fischer N, Rostaher A, Schwager S, Detmar M, Frauenknecht K, Aguzzi A, Hubbs JL, Rudolph U, Favrot C, Zeilhofer HU.
PMID: 30104684 | DOI: 10.1038/s41467-018-05709-0
Chronic itch is a highly debilitating condition affecting about 10% of the general population. The relay of itch signals is under tight control by inhibitory circuits of the spinal dorsal horn, which may offer a hitherto unexploited therapeutic opportunity. Here, we found that specific pharmacological targeting of inhibitory α2 and α3GABAA receptors reduces acute histaminergic and non-histaminergic itch in mice. Systemic treatment with an α2/α3GABAA receptor selective modulator alleviates also chronic itch in a mouse model of atopic dermatitis and in dogs sensitized to house dust mites, without inducing sedation, motor dysfunction, or loss of antipruritic activity after prolonged treatment. Transsynaptic circuit tracing, immunofluorescence, and electrophysiological experiments identify spinal α2 and α3GABAA receptors as likely molecular targets underlying the antipruritic effect. Our results indicate that drugs targeting α2 and α3GABAA receptors are well-suited to alleviate itch, including non-histaminergic chronic itch for which currently no approved treatment exists.
Cell Rep.
2019 Mar 05
Mehta P, Kreeger L, Wylie DC, Pattadkal JJ, Lusignan T, Davis MJ, Turi GF, Li WK, Whitmire MP, Chen Y, Kajs BL, Seidemann E, Priebe NJ, Losonczy A, Zemelman BV.
PMID: 30840900 | DOI: 10.1016/j.celrep.2019.02.011
Viral vectors enable foreign proteins to be expressed in brains of non-genetic species, including non-human primates. However, viruses targeting specific neuron classes have proved elusive. Here we describe viral promoters and strategies for accessing GABAergic interneurons and their molecularly defined subsets in the rodent and primate. Using a set intersection approach, which relies on two co-active promoters, we can restrict heterologous protein expression to cortical and hippocampal somatostatin-positive and parvalbumin-positive interneurons. With an orthogonal set difference method, we can enrich for subclasses of neuropeptide-Y-positive GABAergic interneurons by effectively subtracting the expression pattern of one promoter from that of another. These methods harness the complexity of gene expression patterns in the brain and significantly expand the number of genetically tractable neuron classes across mammals.
Biological psychiatry
2023 Feb 24
Hua, SS;Ding, JJ;Sun, TC;Guo, C;Zhang, Y;Yu, ZH;Cao, YQ;Zhong, LH;Wu, Y;Guo, LY;Luo, JH;Cui, YH;Qiu, S;
PMID: 36842495 | DOI: 10.1016/j.biopsych.2023.02.013
ACS chemical neuroscience
2022 Apr 20
Dai, D;Li, W;Chen, A;Gao, XF;Xiong, L;
PMID: 35412792 | DOI: 10.1021/acschemneuro.2c00067
Nature neuroscience
2021 Jun 24
Mohammad, H;Senol, E;Graf, M;Lee, CY;Li, Q;Liu, Q;Yeo, XY;Wang, M;Laskaratos, A;Xu, F;Luo, SX;Jung, S;Augustine, GJ;Fu, Y;
PMID: 34168339 | DOI: 10.1038/s41593-021-00875-9
Nat Commun.
2018 Jan 24
Weber F, Hoang Do JP, Chung S, Beier KT, Bikov M, Saffari Doost M, Dan Y.
PMID: 29367602 | DOI: 10.1038/s41467-017-02765-w
Mammalian sleep consists of distinct rapid eye movement (REM) and non-REM (NREM) states. The midbrain region ventrolateral periaqueductal gray (vlPAG) is known to be important for gating REM sleep, but the underlying neuronal mechanism is not well understood. Here, we show that activating vlPAG GABAergic neurons in mice suppresses the initiation and maintenance of REM sleep while consolidating NREM sleep, partly through their projection to the dorsolateral pons. Cell-type-specific recording and calcium imaging reveal that most vlPAG GABAergic neurons are strongly suppressed at REM sleep onset and activated at its termination. In addition to the rapid changes at brain state transitions, their activity decreases gradually between REM sleep and is reset by each REM episode in a duration-dependent manner, mirroring the accumulation and dissipation of REM sleep pressure. Thus, vlPAG GABAergic neurons powerfully gate REM sleep, and their firing rate modulation may contribute to the ultradian rhythm of REM/NREM alternation.
Frontiers in neuroendocrinology
2023 May 05
Beekly, BG;Rupp, A;Burgess, CR;Elias, CF;
PMID: 37149229 | DOI: 10.1016/j.yfrne.2023.101069
Neuron
2023 Jan 04
Schroeder, A;Pardi, MB;Keijser, J;Dalmay, T;Groisman, AI;Schuman, EM;Sprekeler, H;Letzkus, JJ;
PMID: 36610397 | DOI: 10.1016/j.neuron.2022.12.010
Nature communications
2021 Aug 25
Zhang, Z;Beier, C;Weil, T;Hattar, S;
PMID: 34433830 | DOI: 10.1038/s41467-021-25378-w
Nature communications
2021 Jul 06
Quijada, P;Trembley, MA;Misra, A;Myers, JA;Baker, CD;Pérez-Hernández, M;Myers, JR;Dirkx, RA;Cohen, ED;Delmar, M;Ashton, JM;Small, EM;
PMID: 34230480 | DOI: 10.1038/s41467-021-24414-z
Nature
2021 Mar 31
Chen, J;Markowitz, JE;Lilascharoen, V;Taylor, S;Sheurpukdi, P;Keller, JA;Jensen, JR;Lim, BK;Datta, SR;Stowers, L;
PMID: 33790464 | DOI: 10.1038/s41586-021-03403-8
Cell
2019 Apr 22
Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y.
PMID: 31031008 | DOI: 10.1016/j.cell.2019.03.041
The perioculomotor (pIII) region of the midbrain was postulated as a sleep-regulating center in the 1890s but largely neglected in subsequent studies. Using activity-dependent labeling and gene expression profiling, we identified pIII neurons that promote non-rapid eye movement (NREM) sleep. Optrode recording showed that pIII glutamatergic neurons expressing calcitonin gene-related peptide alpha (CALCA) are NREM-sleep active; optogenetic and chemogenetic activation/inactivation showed that they strongly promote NREM sleep. Within the pIII region, CALCA neurons form reciprocal connections with another population of glutamatergic neurons that express the peptide cholecystokinin (CCK). Activation of CCK neurons also promoted NREM sleep. Both CALCA and CCK neurons project rostrally to the preoptic hypothalamus, whereas CALCA neurons also project caudally to the posterior ventromedial medulla. Activation of each projection increased NREM sleep. Together, these findings point to the pIII region as an excitatory sleep center where different subsets of glutamatergic neurons promote NREM sleep through both local reciprocal connections and long-range projections.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com