Ion channel mRNA distribution and expression in the sinoatrial node and right atrium of dogs and monkeys
Journal of Toxicologic Pathology
SANO, T;YASUNO, H;WATANABE, T;
| DOI: 10.1293/tox.2020-0089
There are limited data on the gene expression profiles of ion channels in the sinoatrial node (SAN) of dogs and monkeys. In this study, the messenger RNA (mRNA) expression profiles of various ion channels in the SAN of naïve dogs and monkeys were examined using RNAscope _in situ _hybridization and compared with those in the surrounding right atrium (RA) of each species. Regional-specific Cav1.3 and HCN4 expression was observed in the SAN of dogs and monkeys. Additionally, HCN1 in dogs was only expressed in the SAN group. The expression profiles of Cav3.1 and Cav3.2 in the SAN and RA were completely different between dogs and monkeys. Dog hearts only expressed Cav3.2; however, Cav3.1 was detected only in monkeys, and the expression score in the SAN was slightly higher than that in the RA. Although Kir3.1 and NCX1 in dogs were equally expressed in both the SAN and RA, the expression scores of these genes in the SAN of monkeys were slightly higher than those in the RA. The Kir3.4 expression score in the SAN of dogs and monkeys was also slightly higher than that in the RA. The mRNA expression scores of Kv11.1/ERG and KvLQT1 were equally observed in both the SAN and RA of dogs and monkeys. HCN2 was not detected in dogs and monkeys. In summary, we used RNAscope to demonstrate the SAN-specific gene expression patterns of ion channels, which may be useful in explaining the effect of pacemaking and/or hemodynamic effects in nonclinical studies.
Brain pathology (Zurich, Switzerland)
Rossini, L;De Santis, D;Cecchini, E;Cagnoli, C;Maderna, E;Cartelli, D;Morgan, BP;Torvell, M;Spreafico, R;di Giacomo, R;Tassi, L;de Curtis, M;Garbelli, R;
PMID: 36564349 | DOI: 10.1111/bpa.13141
Dendritic spines are the postsynaptic sites for most excitatory glutamatergic synapses. We previously demonstrated a severe spine loss and synaptic reorganization in human neocortices presenting Type II focal cortical dysplasia (FCD), a developmental malformation and frequent cause of drug-resistant focal epilepsy. We extend the findings, investigating the potential role of complement components C1q and C3 in synaptic pruning imbalance. Data from Type II FCD were compared with those obtained in focal epilepsies with different etiologies. Neocortical tissues were collected from 20 subjects, mainly adults with a mean age at surgery of 31 years, admitted to epilepsy surgery with a neuropathological diagnosis of: cryptogenic, temporal lobe epilepsy with hippocampal sclerosis, and Type IIa/b FCD. Dendritic spine density quantitation, evaluated in a previous paper using Golgi impregnation, was available in a subgroup. Immunohistochemistry, in situ hybridization, electron microscopy, and organotypic cultures were utilized to study complement/microglial activation patterns. FCD Type II samples presenting dendritic spine loss were characterized by an activation of the classical complement pathway and microglial reactivity. In the same samples, a close relationship between microglial cells and dendritic segments/synapses was found. These features were consistently observed in Type IIb FCD and in 1 of 3 Type IIa cases. In other patient groups and in perilesional areas outside the dysplasia, not presenting spine loss, these features were not observed. In vitro treatment with complement proteins of organotypic slices of cortical tissue with no sign of FCD induced a reduction in dendritic spine density. These data suggest that dysregulation of the complement system plays a role in microglia-mediated spine loss. This mechanism, known to be involved in the removal of redundant synapses during development, is likely reactivated in Type II FCD, particularly in Type IIb; local treatment with anticomplement drugs could in principle modify the course of disease in these patients.
Brain pathology (Zurich, Switzerland)
Cooze, BJ;Dickerson, M;Loganathan, R;Watkins, LM;Grounds, E;Pearson, BR;Bevan, RJ;Morgan, BP;Magliozzi, R;Reynolds, R;Neal, JW;Howell, OW;
PMID: 35132719 | DOI: 10.1111/bpa.13054
The extent of grey matter demyelination and neurodegeneration in the progressive multiple sclerosis (PMS) brains at post-mortem associates with more severe disease. Regional tissue atrophy, especially affecting the cortical and deep grey matter, including the thalamus, is prognostic for poor outcomes. Microglial and complement activation are important in the pathogenesis and contribute to damaging processes that underlie tissue atrophy in PMS. We investigated the extent of pathology and innate immune activation in the thalamus in comparison to cortical grey and white matter in blocks from 21 cases of PMS and 10 matched controls. Using a digital pathology workflow, we show that the thalamus is invariably affected by demyelination and had a far higher proportion of active inflammatory lesions than forebrain cortical tissue blocks from the same cases. Lesions were larger and more frequent in the medial nuclei near the ventricular margin, whilst neuronal loss was greatest in the lateral thalamic nuclei. The extent of thalamic neuron loss was not associated with thalamic demyelination but correlated with the burden of white matter pathology in other forebrain areas (Spearman r = 0.79, p < 0.0001). Only thalamic neuronal loss, and not that seen in other forebrain cortical areas, correlated with disease duration (Spearman r = -0.58, p = 0.009) and age of death (Spearman r = -0.47, p = 0.045). Immunoreactivity for the complement pattern recognition molecule C1q, and products of complement activation (C4d, Bb and C3b) were elevated in thalamic lesions with an active inflammatory pathology. Complement regulatory protein, C1 inhibitor, was unchanged in expression. We conclude that active inflammatory demyelination, neuronal loss and local complement synthesis and activation in the thalamus, are important to the pathological and clinical disease outcomes of PMS.
Vu, R;Jin, S;Sun, P;Haensel, D;Nguyen, QH;Dragan, M;Kessenbrock, K;Nie, Q;Dai, X;
PMID: 35926463 | DOI: 10.1016/j.celrep.2022.111155
Delayed and often impaired wound healing in the elderly presents major medical and socioeconomic challenges. A comprehensive understanding of the cellular/molecular changes that shape complex cell-cell communications in aged skin wounds is lacking. Here, we use single-cell RNA sequencing to define the epithelial, fibroblast, immune cell types, and encompassing heterogeneities in young and aged skin during homeostasis and identify major changes in cell compositions, kinetics, and molecular profiles during wound healing. Our comparative study uncovers a more pronounced inflammatory phenotype in aged skin wounds, featuring neutrophil persistence and higher abundance of an inflammatory/glycolytic Arg1Hi macrophage subset that is more likely to signal to fibroblasts via interleukin (IL)-1 than in young counterparts. We predict systems-level differences in the number, strength, route, and signaling mediators of putative cell-cell communications in young and aged skin wounds. Our study exposes numerous cellular/molecular targets for functional interrogation and provides a hypothesis-generating resource for future wound healing studies.
Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J, Marsh SE, Saunders A, Macosko E, Ginhoux F, Chen J, Franklin RJM, Piao X, McCarroll SA, Stevens B.
PMID: 30471926 | DOI: 10.1016/j.immuni.2018.11.004
Microglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers. The greatest microglial heterogeneity was found at young ages; however, several states-including chemokine-enriched inflammatory microglia-persisted throughout the lifespan or increased in the aged brain. Multiple reactive microglial subtypes were also found following demyelinating injury in mice, at least one of which was also found in human multiple sclerosis lesions. These distinct microglia signatures can be used to better understand microglia function and to identify and manipulate specific subpopulations in health and disease.
Jiang Z, Yue WWS, Chen L, Sheng Y, Yau KW.
PMID: - | DOI: 10.1016/j.cell.2018.08.055
Non-image-forming vision in mammals is mediated primarily by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, by far the best-studied subtype, melanopsin activates PLCβ4 (phospholipase C-β4) to open TRPC6,7 channels, mechanistically similar to phototransduction in fly rhabdomeric (microvillous) photoreceptors. We report here that, surprisingly, mouse M4-ipRGCs rely on a different and hitherto undescribed melanopsin-driven, ciliary phototransduction mechanism involving cyclic nucleotide as the second messenger and HCN channels rather than CNG channels as the ion channel for phototransduction. Even more surprisingly, within an individual mouse M2-ipRGC, this HCN-channel-dependent, ciliary phototransduction pathway operates in parallel with the TRPC6,7-dependent rhabdomeric pathway. These findings reveal a complex heterogeneity in phototransduction among ipRGCs and, more importantly, break a general dogma about segregation of the two phototransduction motifs, likely with strong evolutionary implications.
The Journal of clinical investigation
Goodyer, WR;Beyersdorf, BM;Duan, L;van den Berg, NS;Mantri, S;Galdos, FX;Puluca, N;Buikema, JW;Lee, S;Salmi, D;Robinson, ER;Rogalla, S;Cogan, DP;Khosla, C;Rosenthal, EL;Wu, SM;
PMID: 35951416 | DOI: 10.1172/JCI156955
Accidental injury to the cardiac conduction system (CCS), a network of specialized cells embedded within the heart and indistinguishable from the surrounding heart muscle tissue, is a major complication in cardiac surgeries. Here, we addressed this unmet need by engineering targeted antibody-dye conjugates directed against CCS, allowing for the visualization of the CCS in vivo following a single intravenous injection in mice. These optical imaging tools showed high sensitivity, specificity, and resolution, with no adverse effects to CCS function. Further, with the goal of creating a viable prototype for human use, we generated a fully human monoclonal Fab, that similarly targets the CCS with high specificity. We demonstrate that, when conjugated to an alternative cargo, this Fab can also be used to modulate CCS biology in vivo providing a proof-of-principle for targeted cardiac therapeutics. Finally, in performing differential gene expression analyses of the entire murine CCS at single-cell resolution, we uncovered and validated a suite of additional cell surface markers that can be used to molecularly target the distinct subcomponents of the CCS, each prone to distinct life-threatening arrhythmias. These findings lay the foundation for translational approaches targeting the CCS for visualization and therapy in cardiothoracic surgery, cardiac imaging and arrhythmia management.
Henley, T;Goudy, J;Easterling, M;Donley, C;Wirka, R;Bressan, M;
PMID: 36973005 | DOI: 10.26508/lsa.202201799
Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a "soft" macromolecular ECM that specifically encapsulates CPCs. In addition, we demonstrate that subjecting embryonic CPCs to substrate stiffnesses higher than those measured in vivo results in loss of coherent electrical oscillation and dysregulation of the HCN4 and NCX1 ion channels required for CPC automaticity. Collectively, these data indicate that local mechanics play a critical role in maintaining the embryonic CPC function while also quantitatively defining the range of material properties that are optimal for embryonic CPC maturation.
Proc Natl Acad Sci U S A.
Kalish BT, Cheadle L, Hrvatin S, Nagy MA, Rivera S, Crow M, Gillis J, Kirchner R, Greenberg ME.
PMID: 29343640 | DOI: 10.1073/pnas.1717871115
Coordinated changes in gene expression underlie the early patterning and cell-type specification of the central nervous system. However, much less is known about how such changes contribute to later stages of circuit assembly and refinement. In this study, we employ single-cell RNA sequencing to develop a detailed, whole-transcriptome resource of gene expression across four time points in the developing dorsal lateral geniculate nucleus (LGN), a visual structure in the brain that undergoes a well-characterized program of postnatal circuit development. This approach identifies markers defining the major LGN cell types, including excitatory relay neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells. Most cell types exhibit significant transcriptional changes across development, dynamically expressing genes involved in distinct processes including retinotopic mapping, synaptogenesis, myelination, and synaptic refinement. Our data suggest that genes associated with synapse and circuit development are expressed in a larger proportion of nonneuronal cell types than previously appreciated. Furthermore, we used this single-cell expression atlas to identify the Prkcd-Cre mouse line as a tool for selective manipulation of relay neurons during a late stage of sensory-driven synaptic refinement. This transcriptomic resource provides a cellular map of gene expression across several cell types of the LGN, and offers insight into the molecular mechanisms of circuit development in the postnatal brain.
Matson, KJE;Russ, DE;Kathe, C;Hua, I;Maric, D;Ding, Y;Krynitsky, J;Pursley, R;Sathyamurthy, A;Squair, JW;Levi, BP;Courtine, G;Levine, AJ;
PMID: 36163250 | DOI: 10.1038/s41467-022-33184-1
After spinal cord injury, tissue distal to the lesion contains undamaged cells that could support or augment recovery. Targeting these cells requires a clearer understanding of their injury responses and capacity for repair. Here, we use single nucleus RNA sequencing to profile how each cell type in the lumbar spinal cord changes after a thoracic injury in mice. We present an atlas of these dynamic responses across dozens of cell types in the acute, subacute, and chronically injured spinal cord. Using this resource, we find rare spinal neurons that express a signature of regeneration in response to injury, including a major population that represent spinocerebellar projection neurons. We characterize these cells anatomically and observed axonal sparing, outgrowth, and remodeling in the spinal cord and cerebellum. Together, this work provides a key resource for studying cellular responses to injury and uncovers the spontaneous plasticity of spinocerebellar neurons, uncovering a potential candidate for targeted therapy.
A RIPK1-regulated inflammatory microglial state in amyotrophic lateral sclerosis
Proceedings of the National Academy of Sciences of the United States of America
Mifflin, L;Hu, Z;Dufort, C;Hession, CC;Walker, AJ;Niu, K;Zhu, H;Liu, N;Liu, JS;Levin, JZ;Stevens, B;Yuan, J;Zou, C;
PMID: 33766915 | DOI: 10.1073/pnas.2025102118
Microglial-derived inflammation has been linked to a broad range of neurodegenerative and neuropsychiatric conditions, including amyotrophic lateral sclerosis (ALS). Using single-cell RNA sequencing, a class of Disease-Associated Microglia (DAMs) have been characterized in neurodegeneration. However, the DAM phenotype alone is insufficient to explain the functional complexity of microglia, particularly with regard to regulating inflammation that is a hallmark of many neurodegenerative diseases. Here, we identify a subclass of microglia in mouse models of ALS which we term RIPK1-Regulated Inflammatory Microglia (RRIMs). RRIMs show significant up-regulation of classical proinflammatory pathways, including increased levels of Tnf and Il1b RNA and protein. We find that RRIMs are highly regulated by TNFα signaling and that the prevalence of these microglia can be suppressed by inhibiting receptor-interacting protein kinase 1 (RIPK1) activity downstream of the TNF receptor 1. These findings help to elucidate a mechanism by which RIPK1 kinase inhibition has been shown to provide therapeutic benefit in mouse models of ALS and may provide an additional biomarker for analysis in ongoing phase 2 clinical trials of RIPK1 inhibitors in ALS.
Das, M;Mao, W;Shao, E;Tamhankar, S;Yu, G;Yu, X;Ho, K;Wang, X;Wang, J;Mucke, L;
| DOI: 10.1016/j.isci.2021.103245
Nonconvulsive epileptiform activity and microglial alterations have been detected in people with Alzheimer’s disease (AD) and related mouse models. However, the relationship between these abnormalities remains to be elucidated. We suppressed epileptiform activity by treatment with the antiepileptic drug levetiracetam or by genetic ablation of tau and found that these interventions reversed or prevented aberrant microglial gene expression in brain tissues of aged human amyloid precursor protein transgenic mice, which simulate several key aspects of AD. The most robustly modulated genes included multiple factors previously implicated in AD pathogenesis, including TREM2, the hypofunction of which increases disease risk. Genetic reduction of TREM2 exacerbated epileptiform activity after mice were injected with kainate. We conclude that AD-related epileptiform activity markedly changes the molecular profile of microglia, inducing both maladaptive and adaptive alterations in their activities. Increased expression of TREM2 seems to support microglial activities that counteract this type of network dysfunction.