ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Brain Struct Funct. 2015 Jul 10.
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB.
PMID: 26159773
Molecular autism
2023 Jun 14
Olde Heuvel, F;Ouali Alami, N;Aousji, O;Pogatzki-Zahn, E;Zahn, PK;Wilhelm, H;Deshpande, D;Khatamsaz, E;Catanese, A;Woelfle, S;Schön, M;Jain, S;Grabrucker, S;Ludolph, AC;Verpelli, C;Michaelis, J;Boeckers, TM;Roselli, F;
PMID: 37316943 | DOI: 10.1186/s13229-023-00552-7
Molecular Metabolism
2018 Nov 20
Tooke BP, Yu H, Adams JM, Jones GL, Sutton-Kennedy T, Mundada L, Qi NR, Low MJ, Chhabra KH.
PMID: - | DOI: 10.1016/j.molmet.2018.11.004
Life-threatening hypoglycemia is a major limiting factor in the management of diabetes. While it is known that counterregulatory responses to hypoglycemia are impaired in diabetes, molecular mechanisms underlying the reduced responses remain unclear. Given the established roles of the hypothalamic proopiomelanocortin (POMC)/melanocortin 4 receptor (MC4R) circuit in regulating sympathetic nervous system (SNS) activity and the SNS in stimulating counterregulatory responses to hypoglycemia, we hypothesized that hypothalamic POMC as well as MC4R, a receptor for POMC derived melanocyte stimulating hormones, is required for normal hypoglycemia counterregulation.
To test the hypothesis, we induced hypoglycemia or glucopenia in separate cohorts of mice deficient in either POMC or MC4R in the arcuate nucleus (ARC) or the paraventricular nucleus of the hypothalamus (PVH), respectively, and measured their circulating counterregulatory hormones. In addition, we performed a hyperinsulinemic-hypoglycemic clamp study to further validate the function of MC4R in hypoglycemia counterregulation. We also measured Pomc and Mc4r mRNA levels in the ARC and PVH, respectively, in the streptozotocin-induced type 1 diabetes mouse model and non-obese diabetic (NOD) mice to delineate molecular mechanisms by which diabetes deteriorates the defense systems against hypoglycemia. Finally, we treated diabetic mice with the MC4R agonist MTII, administered stereotaxically into the PVH, to determine its potential for restoring the counterregulatory response to hypoglycemia in diabetes.
Stimulation of epinephrine and glucagon release in response to hypoglycemia or glucopenia was diminished in both POMC- and MC4R-deficient mice, relative to their littermate controls. Similarly, the counterregulatory response was impaired in association with decreased hypothalamic Pomc and Mc4r expression in the diabetic mice, a phenotype that was not reversed by insulin treatment which normalized glycemia. In contrast, infusion of an MC4R agonist in the PVH restored the counterregulatory response in diabetic mice.
In conclusion, hypothalamic Pomc as well as Mc4r, both of which are reduced in type 1 diabetic mice, are required for normal counterregulatory responses to hypoglycemia. Therefore, enhancing MC4R function may improve hypoglycemia counterregulation in diabetes.
Endocrinology
2019 Feb 07
Krajewski-Hall SJ, Miranda Dos Santos F, McMullen NT, Blackmore EM, Rance NE.
PMID: 30753503 | DOI: 10.1210/en.2018-00934
We have proposed that KNDy (kisspeptin/neurokinin B/dynorphin) neurons contribute to hot flushes via projections to neurokinin 3 receptor (NK3R) expressing neurons in the median preoptic nucleus (MnPO). To characterize the thermoregulatory role of MnPO NK3R neurons in female mice, we ablated these neurons using injections of saporin toxin conjugated to a selective NK3R agonist. Loss of MnPO NK3R neurons increased core temperature (TCORE) during the light phase, with frequency distributions indicating a regulated shift in the balance point. The rise in TCORE in ablated mice occurred despite changes in ambient temperature (TAMBIENT) and regardless of estrogen status. We next determined if an acute increase in TAMBIENT or higher TCORE would induce Fos in preoptic EGFP-immunoreactive neurons in Tacr3-EGFP mice. Fos-activation was increased in the MnPO, but there was no induction of Fos in NK3R (EGFP-immunoreactive) neurons. Thus, MnPO NK3R neurons are not activated by warm thermosensors in the skin or viscera and are not warm-sensitive neurons. Finally, RNAscope was used to determine if Tacr3 (NK3R) mRNA was co-expressed with VGLUT2 or VGAT mRNA, markers of glutamatergic or GABAergic neurotransmission, respectively. Interestingly, 94% of NK3R neurons in the MnPO were glutamatergic, whereas in the adjacent MPA, 97% of NK3R neurons were GABAergic. Thus, NK3R neurons in the MnPO are glutamatergic and play a role in reducing TCORE, but they are not activated by warm thermal stimuli (internal or external). These studies suggest that KNDy neurons modulate thermosensory pathways for heat-defense indirectly, via a subpopulation of glutamatergic MnPO neurons that express NK3R.
Anat Rec (Hoboken).
2018 Oct 12
Hackett TA
PMID: 30315630 | DOI: 10.1002/ar.23907
In the brain, purines such as ATP and adenosine can function as neurotransmitters and co-transmitters, or serve as signals in neuron-glial interactions. In thalamocortical (TC) projections to sensory cortex, adenosine functions as a negative regulator of glutamate release via activation of the presynaptic adenosine A1 receptor (A1 R). In the auditory forebrain, restriction of A1 R-adenosine signaling in medial geniculate (MG) neurons is sufficient to extend LTP, LTD, and tonotopic map plasticity in adult mice for months beyond the critical period. Interfering with adenosine signaling in primary auditory cortex (A1) does not contribute to these forms of plasticity, suggesting regional differences in the roles of A1 R-mediated adenosine signaling in the forebrain. To advance understanding of the circuitry, in situ hybridization was used to localize neuronal and glial cell types in the auditory forebrain that express A1 R transcripts (Adora1), based on co-expression with cell-specific markers for neuronal and glial subtypes. In A1, Adora1 transcripts were concentrated in L3/4 and L6 of glutamatergic neurons. Subpopulations of GABAergic neurons, astrocytes, oligodendrocytes, and microglia expressed lower levels of Adora1. In MG, Adora1 was expressed by glutamatergic neurons in all divisions, and subpopulations of all glial classes. The collective findings imply that A1 R-mediated signaling broadly extends to all subdivisions of auditory cortex and MG. Selective expression by neuronal and glial subpopulations suggests that experimental manipulations of A1 R-adenosine signaling could impact several cell types, depending on their location. Strategies to target Adora1 in specific cell types can be developed from the data generated here.
Front Neuroanat
2019 Mar 08
Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J and Gundlach AL
PMID: 30906254 | DOI: 10.3389/fnana.2019.00030
The Journal of experimental medicine
2022 Jun 06
Hanuscheck, N;Thalman, C;Domingues, M;Schmaul, S;Muthuraman, M;Hetsch, F;Ecker, M;Endle, H;Oshaghi, M;Martino, G;Kuhlmann, T;Bozek, K;van Beers, T;Bittner, S;von Engelhardt, J;Vogt, J;Vogelaar, CF;Zipp, F;
PMID: 35587822 | DOI: 10.1084/jem.20211887
Proceedings of the National Academy of Sciences of the United States of America
2021 Jul 06
Cimino, I;Kim, H;Tung, YCL;Pedersen, K;Rimmington, D;Tadross, JA;Kohnke, SN;Neves-Costa, A;Barros, A;Joaquim, S;Bennett, D;Melvin, A;Lockhart, SM;Rostron, AJ;Scott, J;Liu, H;Burling, K;Barker, P;Clatworthy, MR;Lee, EC;Simpson, AJ;Yeo, GSH;Moita, LF;Bence, KK;Jørgensen, SB;Coll, AP;Breen, DM;O'Rahilly, S;
PMID: 34187898 | DOI: 10.1073/pnas.2106868118
eNeuro
2017 Mar 17
Samineni VK, Grajales-Reyes JG, Copits BA, O’Brien DE, Trigg SL, Gomez AM, Bruchas MR, Gereau RW.
PMID: - | DOI: 10.1523/ENEURO.0129-16.2017
The ventrolateral periaqueductal gray (vlPAG) constitutes a major descending pain modulatory system and is a crucial site for opioid-induced analgesia. A number of previous studies have demonstrated that glutamate and GABA play critical opposing roles in nociceptive processing in the vlPAG. It has been suggested that glutamatergic neurotransmission exerts antinociceptive effects, whereas GABAergic neurotransmission exert pro-nociceptive effects on pain transmission, through descending pathways. The inability to exclusively manipulate subpopulations of neurons in the PAG has prevented direct testing of this hypothesis. Here we demonstrate the different contributions of genetically-defined glutamatergic and GABAergic vlPAG neurons in nociceptive processing by employing cell type-specific chemogenetic approaches in mice. Global chemogenetic manipulation of vlPAG neuronal activity suggests that vlPAG neural circuits exert tonic suppression of nociception, consistent with previous pharmacological and electrophysiological studies. However, selective modulation of GABAergic or glutamatergic neurons demonstrates an inverse regulation of nociceptive behaviors by these cell populations. Selective chemogenetic activation of glutamatergic neurons, or inhibition of GABAergic neurons, in vlPAG suppresses nociception. In contrast, inhibition of glutamatergic neurons, or activation of GABAergic neurons, in vlPAG facilitates nociception. Our findings provide direct experimental support for a model in which excitatory and inhibitory neurons in the PAG bidirectionally modulate nociception.
Significance Statement The PAG is a midbrain region critical for the modulation of pain. However, the roles played by the distinct cell types within the PAG in nociceptive processing are poorly understood. This work addresses the divergent roles of glutamatergic and GABAergic PAG neuronal subpopulations in nociceptive processing. We demonstrate that activation of glutamatergic neurons or inhibition of GABAergic neurons suppresses nociception. Whereas inhibition of glutamatergic neuronal activity or activation of GABAergic neuronal activity potentiates nociception. This report identifies distinct roles for these neuronal populations in modulating nociceptive processing.
Biological Psychiatry Global Open Science
2021 Jul 01
Nedelescu, H;Wagner, G;De Ness, G;Carrol, A;Kerr, T;Wang, J;Zhang, S;Chang, S;Than, A;Emerson, N;Suto, N;Weiss, F;
| DOI: 10.1016/j.bpsgos.2021.06.014
The Journal of neuroscience : the official journal of the Society for Neuroscience
2022 Apr 19
Ambler, M;Hitrec, T;Wilson, A;Cerri, M;Pickering, A;
PMID: 35440490 | DOI: 10.1523/JNEUROSCI.2102-21.2022
Endocrinology.
2016 Apr 25
Liu Y, Huang Y, Liu T, Wu H, Cui H, Gautron L.
PMID: 27111742 | DOI: -
While Agouti-related peptide (AgRP) neurons play a key role in the regulation of food intake, their contribution to the anorexia caused by pro-inflammatory insults has yet to be identified. Using a combination of neuroanatomical and pharmacogenetics experiments, this study sought to investigate the importance of AgRP neurons and downstream targets in the anorexia caused by the peripheral administration of a moderate dose of lipopolysaccharide (LPS; 100 μ g/kg, ip). First, in the C57/Bl6 mouse, we demonstrated that LPS induced c-fos in select AgRP-innervated brain sites involved in feeding, but not in any arcuate proopiomelanocortin neurons. Double immunohistochemistry further showed that LPS selectively induced c-Fos in a large subset of melanocortin 4 receptor-expressing neurons in the lateral parabrachial nucleus. Secondly, we used pharmacogenetics to stimulate the activity of AgRP neurons during the course of LPS-induced anorexia. In AgRP-Cre mice expressing the designer receptor hM3Dq-Gq only in AgRP neurons, the administration of the designer drug clozapine-N-oxide (CNO) induced robust food intake. Strikingly, CNO-mediated food intake was rapidly and completely blunted by the coadministration of LPS. Neuroanatomical experiments further indicated that LPS did not interfere with the ability of CNO to stimulate c-Fos in AgRP neurons. In summary, our findings combined together support the view that the stimulation of select AgRP-innervated brain sites and target neurons, rather than the inhibition of AgRP neurons themselves, is likely to contribute to the rapid suppression of food intake observed during acute bacterial endotoxemia.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com