Molecular reproduction and development
Wilson, RL;Lampe, K;Gupta, MK;Duvall, CL;Jones, HN;
PMID: 36094907 | DOI: 10.1002/mrd.23644
Fetal growth restriction (FGR) significantly contributes to neonatal and perinatal morbidity and mortality. Currently, there are no effective treatment options for FGR during pregnancy. We have developed a nanoparticle gene therapy targeting the placenta to increase expression of human insulin-like growth factor 1 (hIGF1) to correct fetal growth trajectories. Using the maternal nutrient restriction guinea pig model of FGR, an ultrasound-guided, intraplacental injection of nonviral, polymer-based hIGF1 nanoparticle containing plasmid with the hIGF1 gene and placenta-specific Cyp19a1 promotor was administered at mid-pregnancy. Sustained hIGF1 expression was confirmed in the placenta 5 days after treatment. Whilst increased hIGF1 did not change fetal weight, circulating fetal glucose concentration were 33%-67% higher. This was associated with increased expression of glucose and amino acid transporters in the placenta. Additionally, hIGF1 nanoparticle treatment increased the fetal capillary volume density in the placenta, and reduced interhaemal distance between maternal and fetal circulation. Overall, our findings, that trophoblast-specific increased expression of hIGF1 results in changes to glucose transporter expression and increases fetal glucose concentrations within a short time period, highlights the translational potential this treatment could have in correcting impaired placental nutrient transport in human pregnancies complicated by FGR.
Bai, K;Norberg, SM;Sievers, C;Meyer, T;Friedman, J;Hinrichs, C;Allen, CT;
PMID: 35815785 | DOI: 10.1002/hed.27144
Immune checkpoint blockade can provide clinical benefit for patients with advanced cancer. Here, we report durable disease control over many years following PD-L1 blockade through induction of a viral antigen-specific T cell response in an adult patient with recurrent respiratory papillomatosis.Antigen-specific T cell response assays, single cell RNA-sequencing, and RNA-scope was used to study clinical tissues.An HPV6 E2-specific T cell clone restricted to HLA-B*55, present at low frequency in the pre-treatment papilloma, significantly expanded after six doses of PD-L1 blockade and remained present and functional at the site of initial response in the larynx as a tissue resident memory T cell for 4 years. An associated reduction in E2 target gene was observed following treatment.Although demonstrated in a single exceptional responder, these results highlight that immune checkpoint blockade may induce durable, viral antigen-specific immunity of sufficient magnitude to control disease in patients with nonmalignant disorders.
Möller, E;Praz, V;Rajendran, S;Dong, R;Cauderay, A;Xing, YH;Lee, L;Fusco, C;Broye, LC;Cironi, L;Iyer, S;Rengarajan, S;Awad, ME;Naigles, B;Letovanec, I;Ormas, N;Finzi, G;La Rosa, S;Sessa, F;Chebib, I;Petur Nielsen, G;Digklia, A;Spentzos, D;Cote, GM;Choy, E;Aryee, M;Stamenkovic, I;Boulay, G;Rivera, MN;Riggi, N;
PMID: 35477713 | DOI: 10.1038/s41467-022-29910-4
Oncogenic fusion proteins generated by chromosomal translocations play major roles in cancer. Among them, fusions between EWSR1 and transcription factors generate oncogenes with powerful chromatin regulatory activities, capable of establishing complex gene expression programs in permissive precursor cells. Here we define the epigenetic and 3D connectivity landscape of Clear Cell Sarcoma, an aggressive cancer driven by the EWSR1-ATF1 fusion gene. We find that EWSR1-ATF1 displays a distinct DNA binding pattern that requires the EWSR1 domain and promotes ATF1 retargeting to new distal sites, leading to chromatin activation and the establishment of a 3D network that controls oncogenic and differentiation signatures observed in primary CCS tumors. Conversely, EWSR1-ATF1 depletion results in a marked reconfiguration of 3D connectivity, including the emergence of regulatory circuits that promote neural crest-related developmental programs. Taken together, our study elucidates the epigenetic mechanisms utilized by EWSR1-ATF1 to establish regulatory networks in CCS, and points to precursor cells in the neural crest lineage as candidate cells of origin for these tumors.
Development (Cambridge, England)
Hoyle, DJ;Dranow, DB;Schilling, TF;
PMID: 34919126 | DOI: 10.1242/dev.199826
Secreted signals in patterning systems often induce repressive signals that shape their distributions in space and time. In developing growth plates (GPs) of endochondral long bones, Parathyroid hormone-like hormone (Pthlh) inhibits Indian hedgehog (Ihh) to form a negative-feedback loop that controls GP progression and bone size. Whether similar systems operate in other bones and how they arise during embryogenesis remain unclear. We show that Pthlha expression in the zebrafish craniofacial skeleton precedes chondrocyte differentiation and restricts where cells undergo hypertrophy, thereby initiating a future GP. Loss of Pthlha leads to an expansion of cells expressing a novel early marker of the hypertrophic zone (HZ), entpd5a, and later HZ markers, such as ihha, whereas local Pthlha misexpression induces ectopic entpd5a expression. Formation of this early pre-HZ correlates with onset of muscle contraction and requires mechanical force; paralysis leads to loss of entpd5a and ihha expression in the pre-HZ, mislocalized pthlha expression and no subsequent ossification. These results suggest that local Pthlh sources combined with force determine HZ locations, establishing the negative-feedback loop that later maintains GPs.
Molecular cancer therapeutics
Vidimar, V;Park, M;Stubbs, CK;Ingram, NK;Qiang, W;Zhang, S;Gursel, DB;Melnyk, RA;Satchell, KJ;
PMID: 35247912 | DOI: 10.1158/1535-7163.MCT-21-0550
The lack of effective RAS inhibition represents a major unmet medical need in the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we investigate the anticancer activity of RRSP-DTB, an engineered biologic that cleaves the Switch I of all RAS isoforms, in KRAS-mutant PDAC cell lines and patient-derived xenografts (PDXs). We first demonstrate that RRSP-DTB effectively engages RAS and impacts downstream ERK signaling in multiple KRAS-mutant PDAC cell lines inhibiting cell proliferation at picomolar concentrations. We next tested RRSP-DTB in immunodeficient mice bearing KRAS-mutant PDAC PDXs. Treatment with RRSP-DTB led to 95% tumor regression after 29 days. Residual tumors exhibited disrupted tissue architecture, increased fibrosis and fewer proliferating cells compared to controls. Intratumoral levels of phospho-ERK were also significantly lower, indicating in vivo target engagement. Importantly, tumors that started to regrow without RRSP-DTB shrank when treatment resumed, demonstrating resistance to RRSP-DTB had not developed. Tracking persistence of the toxin activity following intraperitoneal injection showed that RRSP-DTB is active in sera from immunocompetent mice for at least one hour, but absent after 16 hours, justifying use of daily dosing. Overall, we report that RRSP-DTB strongly regresses hard-to-treat KRAS-mutant PDX models of pancreatic cancer, warranting further development of this pan-RAS biologic for the management of RAS-addicted tumors.
Cellular and molecular life sciences : CMLS
Wu, X;Wei, H;Wu, JQ;
PMID: 35129669 | DOI: 10.1007/s00018-021-04092-2
Traumatic brain injury (TBI) and spinal cord injury (SCI) are two main central nervous system (CNS) traumas, caused by external physical insults. Both injuries have devastating effects on the quality of life, and there is no effective therapy at present. Notably, gene expression profiling using bulk RNA sequencing (RNA-Seq) and single-cell RNA-Seq (scRNA-Seq) have revealed significant changes in many coding and non-coding genes, as well as important pathways in SCI and TBI. Particularly, recent studies have revealed that long non-coding RNAs (lncRNAs) with lengths greater than 200 nucleotides and without protein-coding potential have tissue- and cell type-specific expression pattern and play critical roles in CNS injury by gain- and loss-of-function approaches. LncRNAs have been shown to regulate protein-coding genes or microRNAs (miRNAs) directly or indirectly, participating in processes including inflammation, glial activation, cell apoptosis, and vasculature events. Therefore, lncRNAs could serve as potential targets for the diagnosis, treatment, and prognosis of SCI and TBI. In this review, we highlight the recent progress in transcriptome studies of SCI and TBI and insights into molecular mechanisms.
Eldridge, S;Scuteri, A;Jones, EMC;Cavaletti, G;Guo, L;Glaze, E;
PMID: 34822690 | DOI: 10.3390/toxics9110300
Chemotherapy-induced peripheral neuropathy (CIPN) is widely recognized as a potentially severe toxicity that often leads to dose reduction or discontinuation of cancer treatment. Symptoms may persist despite discontinuation of chemotherapy and quality of life can be severely compromised. The clinical symptoms of CIPN, and the cellular and molecular targets involved in CIPN, are just as diverse as the wide variety of anticancer agents that cause peripheral neurotoxicity. There is an urgent need for extensive molecular and functional investigations aimed at understanding the mechanisms of CIPN. Furthermore, a reliable human cell culture system that recapitulates the diversity of neuronal modalities found in vivo and the pathophysiological changes that underlie CIPN would serve to advance the understanding of the pathogenesis of CIPN. The demonstration of experimental reproducibility in a human peripheral neuronal cell system will increase confidence that such an in vitro model is clinically useful, ultimately resulting in deeper exploration for the prevention and treatment of CIPN. Herein, we review current in vitro models with a focus on key characteristics and attributes desirable for an ideal human cell culture model relevant for CIPN investigations.
Michel, AO;Donovan, TA;Roediger, B;Lee, Q;Jolly, CJ;Monette, S;
PMID: 34601998 | DOI: 10.1177/03009858211045439
Chronic kidney disease (CKD) is a common cause of morbidity and mortality in domestic cats, but the cause is still largely elusive. While some viruses have been associated with this disease, none have been definitively implicated as causative. Recently, Rodent chaphamaparvovirus 1 was recognized as the cause of murine inclusion body nephropathy, a disease reported for over 40 years in laboratory mice. A novel virus belonging to the same genus, Carnivore chaphamaparvovirus 2, was recently identified in the feces of cats with diarrhea. The goal of this study was to investigate the possible role of chaphamaparvoviruses including members of Rodent chaphamaparvovirus 1 and Carnivore chaphamaparvovirus 2 in the development of feline CKD. The presence of these viruses was retrospectively investigated in formalin-fixed paraffin-embedded feline kidney samples using polymerase chain reaction, in situ hybridization, and immunohistochemistry. Cats were divided into 3 groups: normal (N = 24), CKD (N = 26), and immunocompromised (N = 25). None of the kidney tissues from any of the 75 cats revealed the presence of chaphamaparvovirus DNA, RNA, or antigen. We conclude that viruses belonging to the chaphamaparvovirus genus are unlikely to contribute to the occurrence of feline CKD.
Recovery of Latent HIV-1 from Brain Tissue by Adoptive Cell Transfer in Virally Suppressed Humanized Mice
Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology
Su, H;Sravanam, S;Sillman, B;Waight, E;Makarov, E;Mathews, S;Poluektova, LY;Gorantla, S;Gendelman, HE;Dash, PK;
PMID: 34528173 | DOI: 10.1007/s11481-021-10011-w
Defining the latent human immunodeficiency virus type 1 (HIV-1) burden in the human brain during progressive infection is limited by sample access. Human hematopoietic stem cells (hu-HSCs)-reconstituted humanized mice provide an opportunity for this study. The model mimics, in measure, HIV-1 pathophysiology, transmission, treatment, and elimination in an infected human host. However, to date, brain HIV-1 latency in hu-HSC mice during suppressive antiretroviral therapy (ART) was not studied. To address this need, hu-HSC mice were administered long acting (LA) ART 14 days after HIV-1 infection was established. Animals were maintained under suppressive ART for 3 months, at which time HIV-1 infection was detected at low levels in brain tissue by droplet digital polymerase chain reaction (ddPCR) test on DNA. Notably, adoptive transfer of cells acquired from the hu-HSC mouse brains and placed into naive hu-HSC mice demonstrated viral recovery. These proof-of-concept results demonstrate replication-competent HIV-1 reservoir can be established in hu-HSC mouse brains that persists during long-term ART treatment. Hu-HSC mice-based mouse viral outgrowth assay (hu-MVOA) serves as a sensitive tool to interrogate latent HIV-1 brain reservoirs.
FANCI plays an essential role in spermatogenesis and regulates meiotic histone methylation
Xu, L;Xu, W;Li, D;Yu, X;Gao, F;Qin, Y;Yang, Y;Zhao, S;
PMID: 34373449 | DOI: 10.1038/s41419-021-04034-7
FANCI is an essential component of Fanconi anemia pathway, which is responsible for the repair of DNA interstrand cross-links (ICLs). As an evolutionarily related partner of FANCD2, FANCI functions together with FANCD2 downstream of FA core complex. Currently, growing evidences showed that the essential role of FA pathway in male fertility. However, the underlying mechanisms for FANCI in regulating spermatogenesis remain unclear. In the present study, we found that the male Fanci-/- mice were sterile and exhibited abnormal spermatogenesis, including massive germ cell apoptosis in seminiferous tubules and dramatically decreased number of sperms in epididymis. Besides, FANCI deletion impaired maintenance of undifferentiated spermatogonia. Further investigation indicated that FANCI was essential for FANCD2 foci formation and regulated H3K4 and H3K9 methylation on meiotic sex chromosomes. These findings elucidate the role and mechanism of FANCI during spermatogenesis in mice and provide new insights into the etiology and molecular basis of nonobstructive azoospermia.
Imaging Methods in Xenopus Cells, Embryos, and Tadpoles
Cold Spring Harbor protocols
Davidson, LA;Lowery, LA;
PMID: 34244350 | DOI: 10.1101/pdb.top105627
Xenopus is an excellent vertebrate model system ideally suited for a wide range of imaging methods designed to investigate cell and developmental biology processes. The individual cells of Xenopus are much larger than those in many other vertebrate model systems, such that both cell behavior and subcellular processes can more easily be observed and resolved. Gene function in Xenopus can be manipulated and visualized using a variety of approaches, and the embryonic fate map is stereotypical, such that microinjections can target specific tissues and cell types during development. Tissues, organotypic explants, and individual cells can also be mounted in stable chambers and cultured easily in simple salt solutions without cumbersome environmental controls. Furthermore, Xenopus embryonic tissues can be microsurgically isolated and shaped to expose cell behaviors and protein dynamics in any regions of the embryo to high-resolution live-cell imaging. The combination of these attributes makes Xenopus a powerful system for understanding cell and developmental processes as well as disease mechanisms, through quantitative analysis of protein dynamics, cell movements, tissue morphogenesis, and regeneration. Here, we introduce various methods, of both fixed and living tissues, for visualizing Xenopus cells, embryos, and tadpoles. Specifically, we highlight protocol updates for whole-mount in situ hybridization and immunofluorescence, as well as robust live imaging approaches including methods for optimizing the time-lapse imaging of whole embryos and explants.
Fluorescent nanoparticle-mediated semiquantitative MYC protein expression analysis in morphologically diffuse large B-cell lymphoma
Takayanagi, N;Momose, S;Kikuchi, J;Tanaka, Y;Anan, T;Yamashita, T;Higashi, M;Tokuhira, M;Kizaki, M;Tamaru, JI;
PMID: 34171161 | DOI: 10.1111/pin.13131
The current World Health Organization (WHO) classification defines a new disease entity of high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements, making fluorescence in situ hybridization (FISH) screening for these genes mandatory. In addition, the prognostic significance of MYC expression was reported, with a cut-off value of 40%. However, interobserver discrepancies arise due to the heterogeneous intensity of MYC expression by immunohistochemistry. Moreover, a cut-off value of positivity for MYC protein in diffuse large B-cell lymphoma (DLBCL) varies among studies at present. Here, we applied a high-sensitivity semiquantitative immunohistochemical technique using fluorescent nanoparticles called phosphor-integrated dots (PID) to evaluate the MYC expression in 50 de novo DLBCL cases, and compared it with the conventional diaminobenzidine (DAB)-developing system. The high MYC expression detected by the PID-mediated system predicted poor overall survival in DLBCL patients. However, we found no prognostic value of MYC protein expression for any cut-off value by the DAB-developing system, even if the intensity was considered. These results indicate that the precise evaluation of MYC protein expression can clarify the prognostic values in DLBCL, irrespective of MYC rearrangement.