Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1426)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (220) Apply RNAscope filter
  • TBD (148) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (39) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (12) Apply RNAscope 2.5 HD Brown Assay filter
  • Basescope (10) Apply Basescope filter
  • RNAscope Fluorescent Multiplex Assay (10) Apply RNAscope Fluorescent Multiplex Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Red assay (8) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (7) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Duplex (6) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

Research area

  • Neuroscience (138) Apply Neuroscience filter
  • Cancer (109) Apply Cancer filter
  • Development (55) Apply Development filter
  • Other: Methods (44) Apply Other: Methods filter
  • Inflammation (33) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Stem Cells (15) Apply Stem Cells filter
  • Pain (14) Apply Pain filter
  • HPV (12) Apply HPV filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Covid (8) Apply Covid filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Stem cell (8) Apply Stem cell filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Endocrinology (5) Apply Endocrinology filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Reproduction (5) Apply Reproduction filter
  • Aging (4) Apply Aging filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Other (4) Apply Other filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Skin (4) Apply Skin filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Memory (3) Apply Memory filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Gut (3) Apply Other: Gut filter
  • Other: Reproductive Biology (3) Apply Other: Reproductive Biology filter
  • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Regeneration (3) Apply Regeneration filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Stress (3) Apply Stress filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1426) Apply Publications filter
Neonates and COVID-19: state of the art: Neonatal Sepsis series

Pediatric research

2021 Dec 28

Ryan, L;Plötz, FB;van den Hoogen, A;Latour, JM;Degtyareva, M;Keuning, M;Klingenberg, C;Reiss, IKM;Giannoni, E;Roehr, C;Gale, C;Molloy, EJ;
PMID: 34961785 | DOI: 10.1038/s41390-021-01875-y

The SARS-CoV-2 pandemic has had a significant impact worldwide, particularly in middle- and low-income countries. While this impact has been well-recognized in certain age groups, the effects, both direct and indirect, on the neonatal population remain largely unknown. There are placental changes associated, though the contributions to maternal and fetal illness have not been fully determined. The rate of premature delivery has increased and SARS-CoV-2 infection is proportionately higher in premature neonates, which appears to be related to premature delivery for maternal reasons rather than an increase in spontaneous preterm labor. There is much room for expansion, including long-term data on outcomes for affected babies. Though uncommon, there has been evidence of adverse events in neonates, including Multisystem Inflammatory Syndrome in Children, associated with COVID-19 (MIS-C). There are recommendations for reduction of viral transmission to neonates, though more research is required to determine the role of passive immunization of the fetus via maternal vaccination. There is now considerable evidence suggesting that the severe visitation restrictions implemented early in the pandemic have negatively impacted the care of the neonate and the experiences of both parents and healthcare professionals alike. Ongoing collaboration is required to determine the full impact, and guidelines for future management. IMPACT: Comprehensive review of current available evidence related to impact of the COVID-19 pandemic on neonates, effects on their health, impact on their quality of care and indirect influences on their clinical course, including comparisons with other age groups. Reference to current evidence for maternal experience of infection and how it impacts the fetus and then neonate. Outline of the need for ongoing research, including specific areas in which there are significant gaps in knowledge.
High Systemic Type I Interferon Activity is Associated with Active Class III/IV Lupus Nephritis

The Journal of rheumatology

2021 Nov 15

Iwamoto, T;Dorschner, JM;Selvaraj, S;Mezzano, V;Jensen, MA;Vsetecka, D;Amin, S;Makol, A;Osborn, T;Moder, K;Chowdhary, VR;Izmirly, P;Belmont, HM;Clancy, RM;Buyon, JP;Wu, M;Loomis, CA;Niewold, TB;
PMID: 34782453 | DOI: 10.3899/jrheum.210391

Previous studies suggest a link between high serum type I interferon (IFN) and lupus nephritis (LN). We determined whether serum IFN activity is associated with subtypes of LN and studied renal tissues and cells to understand the impact of IFN in LN.221 systemic lupus erythematosus (SLE) patients were studied. Serum IFN activity was measured by WISH bioassay. mRNA in-situ hybridization was used in renal tissue to measure expression of the representative IFN-induced gene, interferon-induced protein with tetratricopeptide repeats-1 (IFIT1), and the plasmacytoid dendritic cell (pDC) marker gene C-type lectin domain family-4 member C (CLEC4C or BDCA2). Podocyte cell line gene expression was measured by real-time PCR.Class III/IV LN prevalence was significantly increased in patients with high serum IFN compared with those with low IFN (OR=5.48, p=4.0x10-7). In multivariate regression models, type I IFN was a stronger predictor of class III/IV LN than complement C3 or anti-dsDNA antibody, and could account for the association of these variables with LN. IFIT1 expression was increased in all classes of LN, but most in the glomerular areas of active class III/IV LN kidneys. IFIT1 expression was not closely co-localized with pDCs. IFN directly activated podocyte cell lines to induce chemokines and proapoptotic molecules.Systemic high IFN is involved in the pathogenesis of severe LN. We do not find co-localization of pDCs with IFN signature in renal tissue, and instead observe the greatest intensity of IFN signature in glomerular areas, which could suggest a blood source of IFN.
Engineering Cancer Antigen-Specific T Cells to Overcome the Immunosuppressive Effects of TGF-β

Journal of immunology (Baltimore, Md. : 1950)

2022 Jan 01

Silk, JD;Abbott, RJM;Adams, KJ;Bennett, AD;Brett, S;Cornforth, TV;Crossland, KL;Figueroa, DJ;Jing, J;O'Connor, C;Pachnio, A;Patasic, L;Peredo, CE;Quattrini, A;Quinn, LL;Rust, AG;Saini, M;Sanderson, JP;Steiner, D;Tavano, B;Viswanathan, P;Wiedermann, GE;Wong, R;Jakobsen, BK;Britten, CM;Gerry, AB;Brewer, JE;
PMID: 34853077 | DOI: 10.4049/jimmunol.2001357

Adoptive T cell therapy with T cells expressing affinity-enhanced TCRs has shown promising results in phase 1/2 clinical trials for solid and hematological tumors. However, depth and durability of responses to adoptive T cell therapy can suffer from an inhibitory tumor microenvironment. A common immune-suppressive agent is TGF-β, which is secreted by tumor cells and cells recruited to the tumor. We investigated whether human T cells could be engineered to be resistant to inhibition by TGF-β. Truncating the intracellular signaling domain from TGF-β receptor (TGFβR) II produces a dominant-negative receptor (dnTGFβRII) that dimerizes with endogenous TGFβRI to form a receptor that can bind TGF-β but cannot signal. We previously generated specific peptide enhanced affinity receptor TCRs recognizing the HLA-A*02-restricted peptides New York esophageal squamous cell carcinoma 1 (NY-ESO-1)157-165/l-Ag family member-1A (TCR: GSK3377794, formerly NY-ESO-1c259) and melanoma Ag gene A10254-262 (TCR: ADP-A2M10, formerly melanoma Ag gene A10c796). In this article, we show that exogenous TGF-β inhibited in vitro proliferation and effector functions of human T cells expressing these first-generation high-affinity TCRs, whereas inhibition was reduced or abolished in the case of second-generation TCRs coexpressed with dnTGFβRII (e.g., GSK3845097). TGF-β isoforms and a panel of TGF-β-associated genes are overexpressed in a range of cancer indications in which NY-ESO-1 is commonly expressed, particularly in synovial sarcoma. As an example, immunohistochemistry/RNAscope identified TGF-β-positive cells close to T cells in tumor nests and stroma, which had low frequencies of cells expressing IFN-γ in a non-small cell lung cancer setting. Coexpression of dnTGFβRII may therefore improve the efficacy of TCR-transduced T cells.
Yap Promotes Noncanonical Wnt Signals from Cardiomyocytes for Heart Regeneration

Circulation research

2021 Aug 23

Liu, S;Tang, L;Zhao, X;Nguyen, B;Heallen, TR;Li, M;Wang, J;Wang, J;Martin, JF;
PMID: 34424032 | DOI: 10.1161/CIRCRESAHA.121.318966

Rationale: During neonatal heart regeneration, the fibrotic response, which is required to prevent cardiac rupture, resolves via poorly understood mechanisms. Deletion of the Hippo pathway gene Sav in adult CMs increases Yap activity and promotes cardiac regeneration, partly by inducing fibrosis resolution. Deletion of Yap in neonatal cardiomyocytes (CMs) leads to increased fibrosis and loss of neonatal heart regeneration, suggesting that Yap inhibits fibrosis by regulating intercellular signaling from CMs to cardiac fibroblasts (CFs). Objective: We investigated the role of Wntless (Wls), which is a direct target gene of Yap, in communication between CMs and CFs during neonatal heart regeneration. Methods and Results: We generated two mouse models to delete Wls specifically in CMs (Myh6-Cas9 combined with AAV9-Wls-gRNAs, and Myh6cre-ERT2/+; Wlsflox/flox mouse). Reanalysis of single-cell RNA-sequencing data revealed that Wnt ligands are expressed in CMs, whereas Wnt receptors are expressed in CFs, suggesting that Wnt signaling is directional from CMs to CFs during neonatal heart regeneration. Wls deletion in neonatal hearts disrupted Wnt signaling, showing as reduced noncanonical Wnt signaling in non-CMs. Four weeks after neonatal heart infarction, heart function was measured by echocardiography. Wls deletion in neonatal hearts after myocardial infarction impairs neonatal heart regeneration, marked by decreased contractile function and increased fibrosis. Wls mutant hearts display CF activation, characterized by increased extracellular matrix secretion, inflammation, and CF proliferation. Conclusions: These data indicate that during neonatal heart regeneration, intercellular signaling from CMs to CFs occurs via noncanonical Wnt signaling to rebuild cardiac architecture after myocardial infarction.
Integrative Functional Genomic Analysis of Human PTSD Molecular Pathology and Risk

Biological Psychiatry

2021 May 01

Girgenti, M;Skarica, M;Zhang, J;Wang, J;Friedman, M;Zhao, H;Krystal, J;
| DOI: 10.1016/j.biopsych.2021.02.050

Background PTSD is a multigenic and multifactorial disorder occurring in the aftermath of significant trauma exposure. Recent GWAS have identified many high confidence loci as risk factors for PTSD, which have shed some light on impaired mechanisms. However, there are still fundamental gaps in our understanding of how these risk genes and pathways are interrelated in causing PTSD but are likely reflected in cell type-specific transcriptomic and epigenetic changes in the brain. Therefore, it is necessary to uncover the individual cell type contribution to the molecular pathology of PTSD. Methods We isolated nuclei from human postmortem dorsolateral prefrontal cortex (BA 9/46) from n=50 PTSD, MDD, and controls for single nucleus sequencing. We sequenced RNA from 10,000 nuclei per sample and used RNAscope fluorescence in situ hybridization to validate cell type specific gene expression changes. We performed snATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) on 5000 nuclei to generate disease and control open chromatin maps to compare DNA accessibility. Results These results implicate 19 cell types, in particular inhibitory interneurons and microglia as dysregulated in PTSD brain. Open chromatin profiles matched transcript levels and provided new genomic information and possible functional roles for PTSD risk loci identified by GWAS. Conclusions -Omics technologies have been instrumental in our understanding of the connection between the disruption of particular loci and final molecular pathology of neuropsychiatric disorders. Applying functional genomics approaches to characterize findings from multiple layers of single cell-type studies of postmortem brain tissue may therefore help determine which neurotypical processes are most impacted by PTSD.
The thrombin receptor modulates astroglia-neuron trophic coupling and neural repair after spinal cord injury

Glia

2021 Apr 22

Kim, HN;Triplet, EM;Radulovic, M;Bouchal, S;Kleppe, LS;Simon, WL;Yoon, H;Scarisbrick, IA;
PMID: 33887067 | DOI: 10.1002/glia.24012

Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.
PKN1 Is a Novel Regulator of Hippocampal GluA1 Levels

Frontiers in synaptic neuroscience

2021 Feb 05

Safari, MS;Obexer, D;Baier-Bitterlich, G;Zur Nedden, S;
PMID: 33613259 | DOI: 10.3389/fnsyn.2021.640495

Alterations in the processes that control α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) expression, assembly and trafficking are closely linked to psychiatric and neurodegenerative disorders. We have recently shown that the serine/threonine kinase Protein kinase N1 (PKN1) is a developmentally active regulator of cerebellar synaptic maturation by inhibiting AKT and the neurogenic transcription factor neurogenic differentiation factor-2 (NeuroD2). NeuroD2 is involved in glutamatergic synaptic maturation by regulating expression levels of various synaptic proteins. Here we aimed to study the effect of Pkn1 knockout on AKT phosphorylation and NeuroD2 levels in the hippocampus and the subsequent expression levels of the NeuroD2 targets and AMPAR subunits: glutamate receptor 1 (GluA1) and GluA2/3. We show that PKN1 is expressed throughout the hippocampus. Interestingly, not only postnatal but also adult hippocampal phospho-AKT and NeuroD2 levels were significantly elevated upon Pkn1 knockout. Postnatal and adult Pkn1-/- hippocampi showed enhanced expression of the AMPAR subunit GluA1, particularly in area CA1. Surprisingly, GluA2/3 levels were not different between both genotypes. In addition to higher protein levels, we also found an enhanced GluA1 content in the membrane fraction of postnatal and adult Pkn1-/- animals, while GluA2/3 levels remained unchanged. This points toward a very specific regulation of GluA1 expression and/or trafficking by the novel PKN1-AKT-NeuroD2 axis. Considering the important role of GluA1 in hippocampal development as well as the pathophysiology of several disorders, ranging from Alzheimer's, to depression and schizophrenia, our results validate PKN1 for future studies into neurological disorders related to altered AMPAR subunit expression in the hippocampus.
Long noncoding RNA TINCR is a novel regulator of human bronchial epithelial cell differentiation state

Physiological reports

2021 Feb 01

Omote, N;Sakamoto, K;Li, Q;Schupp, JC;Adams, T;Ahangari, F;Chioccioli, M;DeIuliis, G;Hashimoto, N;Hasegawa, Y;Kaminski, N;
PMID: 33527707 | DOI: 10.14814/phy2.14727

Long-noncoding RNAs (lncRNAs) have numerous biological functions controlling cell differentiation and tissue development. The knowledge about the role of lncRNAs in human lungs remains limited. Here we found the regulatory role of the terminal differentiation-induced lncRNA (TINCR) in bronchial cell differentiation. RNA in situ hybridization revealed that TINCR was mainly expressed in bronchial epithelial cells in normal human lung. We performed RNA sequencing analysis of normal human bronchial epithelial cells (NHBECs) with or without TINCR inhibition and found the differential expression of 603 genes, which were enriched for cell adhesion and migration, wound healing, extracellular matrix organization, tissue development and differentiation. To investigate the role of TINCR in the differentiation of NHBECs, we employed air-liquid interface culture and 3D organoid formation assay. TINCR was upregulated during differentiation, loss of TINCR significantly induced an early basal-like cell phenotype (TP63) and a ciliated cell differentiation (FOXJ1) in late phase and TINCR overexpression suppressed basal cell phenotype and the differentiation toward to ciliated cells. Critical regulators of differentiation such as SOX2 and NOTCH genes (NOTCH1, HES1, and JAG1) were significantly upregulated by TINCR inhibition and downregulated by TINCR overexpression. RNA immunoprecipitation assay revealed that TINCR was required for the direct bindings of Staufen1 protein to SOX2, HES1, and JAG1 mRNA. Loss of Staufen1 induced TP63, SOX2, NOTCH1, HES1, and JAG1 mRNA expressions, which TINCR overexpression suppressed partially. In conclusion, TINCR is a novel regular of bronchial cell differentiation, affecting downstream regulators such as SOX2 and NOTCH genes, potentially in coordination with Staufen1.
Renal interstitial fibroblasts coproduce erythropoietin and renin under anaemic conditions

EBioMedicine

2021 Jan 25

Miyauchi, K;Nakai, T;Saito, S;Yamamoto, T;Sato, K;Kato, K;Nezu, M;Miyazaki, M;Ito, S;Yamamoto, M;Suzuki, N;
PMID: 33508746 | DOI: 10.1016/j.ebiom.2021.103209

Erythrocyte mass contributes to maintaining systemic oxygen delivery and blood viscosity, with the latter being one of the determinants of blood pressure. However, the physiological response to blood pressure changes under anaemic conditions remain unknown. We show that anaemia decreases blood pressure in human patients and mouse models. Analyses of pathways related to blood pressure regulation demonstrate that anaemia enhances the expression of the gene encoding the vasopressor substance renin in kidneys. Although kidney juxtaglomerular cells are known to continuously produce renin, renal interstitial fibroblasts are identified in the present study as a novel site of renin induction under anaemic hypotensive conditions in mice and rats. Notably, some renal interstitial fibroblasts are found to simultaneously express renin and the erythroid growth factor erythropoietin in the anaemic mouse kidney. Antihypertensive agents but not hypoxic stimuli induced interstitial renin expression, suggesting that blood pressure reduction triggers interstitial renin induction in anaemic mice. The interstitial renin expression was also detected in injured fibrotic kidneys of the mouse and human, and the renin-expressing interstitial cells in murine fibrotic kidneys were identified as myofibroblasts originating from renal interstitial fibroblasts. Since the elevated expression levels of renin in fibrotic kidneys along with progression of renal fibrosis were well correlated to the systemic blood pressure increase, the renal interstitial renin production seemed to affect systemic blood pressure. Renal interstitial fibroblasts function as central controllers of systemic oxygen delivery by producing both renin and erythropoietin. Grants-in-Aid from Japan Society for the Promotion of Science (JSPS) KAKENHI (17K19680, 15H04691, and 26111002) and the Takeda Science Foundation.
Clinicopathological features of adult T-cell leukemia/lymphoma with HTLV-1–infected Hodgkin and Reed-Sternberg–like cells

Blood Advanced

2021 Jan 01

Karube, K;Takatori, M;Sakihama, S;Tsuruta, Y;
| DOI: 10.1182/bloodadvances.2020003201

HBZ-ISH was performed to detect HTLV-1 in tissue specimens from 21 HTLV-1–seropositive cases with CHL-like morphology (supplemental Table 1). Three cases were nonevaluable due to negativity for the positive control (_PPIB_). HRS-like cells were negative for HBZ-ISH in 10 cases. Among them, 3 cases showed HRS-like cells positive for EBER-ISH and/or PAX5 as well as monoclonal TCR-γ chain gene rearrangement or loss of pan-T-cell antigens in the background cells, corresponding to the currently recognized pathological features of Hodgkin-like ATLL.16,17  Thus, 8 cases, including a recently described case (case 1)19  with a positive HBZ-ISH signal in HRS-like cells, were considered to be ATLL with HTLV-1–infected HRS-like cells. The clinical characteristics of these cases are shown in Table 1. The median age of the patients (4 males and 4 females) was 73 years (range, 55-81 years). All patients showed nodal or mediastinal lesions. Five patients (63%) were in an advanced stage of disease (Ann Arbor stage III or IV) at presentation. Bone marrow and hepatosplenic involvement was observed in 3 and 2 cases, respectively, but no other extranodal lesions were present in any of the cases. All patients except for case 6, who was treated with palliative care because of the co-occurrence of severe liver cirrhosis, received systemic combination chemotherapy. Two patients (cases 1 and 3) were mainly treated with ABVD, a standard therapy for CHL, and 5 patients were treated with a combination chemotherapy regimen such as CHOP. All cases, with enough follow-up period, treated with chemotherapy achieved complete remission, except for case 4, but a longer remission (>2 years) was achieved in 2 patients treated with CHOP. One patient (case 4) had been followed up for chronic-type ATLL before lymph node biopsy. This patient had very high serum levels of soluble interleukin-2 receptor, a prognostic biomarker for poor outcome,8  was refractory to systemic chemotherapy, and died 3 months after diagnosis (Table 1).
Upregulation of WNT Signaling in Lung Epithelial-Mesenchymal Crosstalk May Contribute to the Cystic Remodeling in Pulmonary Lymphangioleiomyomatosis (LAM)

TP108. TP108 CYSTIC FIBROSIS, LAM, SARCOID, AND RARE DISEASES

2021 May 01

Obraztsova, K;Mukhitov, A;Lin, S;Smith, C;Basil, M;Katzen, J;Carl, J;Beers, M;Morrisey, E;Krymskaya, V;
| DOI: 10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A4255

Rationale: Interstitial mesenchymal cells maintain alveolar epithelial (AT) cells (AT1 and AT2) homeostasis in health and disease. Human LAM is characterized by enlarged airspaces, cystic destruction of the lung parenchyma, and lung function decline, leading to respiratory failure. The exact mechanism behind the alveolar remodeling in LAM lung is still unknown. In the genetic mouse model of LAM, characterized by progressive enlargement of airspaces and female-specific lung function decline, we found that lung mesenchymal cells affect AT1/AT2 cell fitness through up-regulation of WNT signaling. We also discovered that genetic inhibition of the WNT pathway in mouse lung mesenchyme restored the observed disease phenotype. We utilized immunofluorescent histochemistry on the lung sections to study the differences in the architecture and cellular composition of the alveolar septal walls in human control and LAM lungs and found an increased number of transitional AT2/AT1 cells. We propose that LAM mesenchyme dysregulates the proliferation of the neighboring AT2 cells, which results in the abnormal architecture of LAM lung parenchyma.Methods: To study mesenchymal-epithelial interactions ex vivo we used 3D co-cultures of mesenchymal cells, isolated from multiple age-matched LAM and control human female lung, with primary AT2 cells isolated from control human female lungs. Results: LAM lung-derived mesenchyme supported increased colony-forming-efficiency (CFE), size, and structural complexity of AT2 organoids, compared to the control ones. LAM lung-derived mesenchymal support cells expressed increased levels of estrogen alphaencoding gene ESR1, as well as pro-mitotic gene WNT2. Using RNA-scope, we found the upregulation of the WNT pathway in the AT2 cells and in the LAM cells compared to the controls. In agreement with these findings, the CFE of LAM-based organoids was increased by estrogen stimulation and decreased by WNT-pathway inhibitors. Notably, control-lung-based organoids had simple monolayer organization, while LAM-based organoids formed highly organized and compartmentalized structures, composed of both AT2 and AT1 cells. LAM-based organoids also exhibited robust staining for AT1 cell marker – AQP5, specifically in the core of the organoid spheres, while AQP5+ cells lined up the walls of the internal organoid compartments. Conclusion: Our data demonstrate that upregulation of mTORC1-WNT signaling drives cystic airspace enlargement due to chronic activation of LAM cells and alveolar epithelial cells, promote abnormal epithelial-mesenchymal crosstalk, which affects the fitness of surrounding AT2 cells and potentially contributes to the cystic remodeling in the LAM lung through WNT pathway dysregulation.
Key Residue in the Precursor Region of M Protein Contributes to the Neurovirulence and Neuroinvasiveness of the African Lineage of Zika Virus

Journal of virology

2023 Feb 22

He, MJ;Wang, HJ;Yan, XL;Lou, YN;Song, GY;Li, RT;Zhu, Z;Zhang, RR;Qin, CF;Li, XF;
PMID: 36840584 | DOI: 10.1128/jvi.01801-22

The Zika virus (ZIKV) represents an important global health threat due to its unusual association with congenital Zika syndrome. ZIKV strains are phylogenetically grouped into the African and Asian lineages. However, the viral determinants underlying the phenotypic differences between the lineages remain unknown. Here, multiple sequence alignment revealed a highly conserved residue at position 21 of the premembrane (prM) protein, which is glutamic acid and lysine in the Asian and African lineages, respectively. Using reverse genetics, we generated a recombinant virus carrying an E21K mutation based on the genomic backbone of the Asian lineage strain FSS13025 (termed E21K). The E21K mutation significantly increased viral replication in multiple neural cell lines with a higher ratio of M to prM production. Animal studies showed E21K exhibited increased neurovirulence in suckling mice, leading to more severe defects in mouse brains by causing more neural cell death and destruction of hippocampus integrity. Moreover, the E21K substitution enhanced neuroinvasiveness in interferon alpha/beta (IFN-α/β) receptor knockout mice, as indicated by the increased mortality, and enhanced replication in mouse brains. The global transcriptional analysis showed E21K infection profoundly altered neuron development networks and induced stronger antiviral immune response than wild type (WT) in both neural cells and mouse brains. More importantly, the reverse K21E mutation based on the genomic backbone of the African strain MR766 caused less mouse neurovirulence. Overall, our findings support the 21st residue of prM functions as a determinant for neurovirulence and neuroinvasiveness of the African lineage of ZIKV. IMPORTANCE The suspected link of Zika virus (ZIKV) to birth defects led the World Health Organization to declare ZIKV a Public Health Emergency of International Concern. ZIKV has been identified to have two dominant phylogenetic lineages, African and Asian. Significant differences exist between the two lineages in terms of neurovirulence and neuroinvasiveness in mice. However, the viral determinants underlying the phenotypic differences are still unknown. Here, combining reverse genetics, animal studies, and global transcriptional analysis, we provide evidence that a single E21K mutation of prM confers to the Asian lineage strain FSS130125 significantly enhanced replication in neural cell lines and more neurovirulent and neuroinvasiveness phenotypes in mice. Our findings support that the highly conserved residue at position 21 of prM functions as a determinant of neurovirulence and neuroinvasiveness of the African lineage of ZIKV in mice.

Pages

  • « first
  • ‹ previous
  • …
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?