Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (1426)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • (-) Remove TBD filter TBD (1413)
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope (220) Apply RNAscope filter
  • TBD (148) Apply TBD filter
  • RNAscope Multiplex Fluorescent Assay (39) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Brown Assay (12) Apply RNAscope 2.5 HD Brown Assay filter
  • Basescope (10) Apply Basescope filter
  • RNAscope Fluorescent Multiplex Assay (10) Apply RNAscope Fluorescent Multiplex Assay filter
  • DNAscope HD Duplex Reagent Kit (8) Apply DNAscope HD Duplex Reagent Kit filter
  • RNAscope 2.5 HD Red assay (8) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope HiPlex v2 assay (7) Apply RNAscope HiPlex v2 assay filter
  • RNAscope 2.5 HD Duplex (6) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (5) Apply RNAscope Multiplex Fluorescent v2 filter
  • BASEscope Assay RED (2) Apply BASEscope Assay RED filter
  • DNAscope Duplex Assay (1) Apply DNAscope Duplex Assay filter
  • miRNAscope (1) Apply miRNAscope filter
  • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Assay (1) Apply RNAscope 2.5 HD Assay filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter
  • RNAScope HiPlex assay (1) Apply RNAScope HiPlex assay filter
  • RNAscope HiPlex Image Registration Software (1) Apply RNAscope HiPlex Image Registration Software filter

Research area

  • Neuroscience (138) Apply Neuroscience filter
  • Cancer (109) Apply Cancer filter
  • Development (55) Apply Development filter
  • Other: Methods (44) Apply Other: Methods filter
  • Inflammation (33) Apply Inflammation filter
  • Infectious (18) Apply Infectious filter
  • HIV (15) Apply HIV filter
  • Stem Cells (15) Apply Stem Cells filter
  • Pain (14) Apply Pain filter
  • HPV (12) Apply HPV filter
  • Other: Neuromuscular Disorders (10) Apply Other: Neuromuscular Disorders filter
  • Other: Heart (9) Apply Other: Heart filter
  • Other: Lung (9) Apply Other: Lung filter
  • CGT (8) Apply CGT filter
  • Covid (8) Apply Covid filter
  • Other: Metabolism (8) Apply Other: Metabolism filter
  • Stem cell (8) Apply Stem cell filter
  • Infectious Disease (7) Apply Infectious Disease filter
  • Immunotherapy (6) Apply Immunotherapy filter
  • Metabolism (6) Apply Metabolism filter
  • Other: Reproduction (6) Apply Other: Reproduction filter
  • Endocrinology (5) Apply Endocrinology filter
  • LncRNAs (5) Apply LncRNAs filter
  • Obesity (5) Apply Obesity filter
  • Reproduction (5) Apply Reproduction filter
  • Aging (4) Apply Aging filter
  • Cystic Fibrosis (4) Apply Cystic Fibrosis filter
  • Heart (4) Apply Heart filter
  • Itch (4) Apply Itch filter
  • lncRNA (4) Apply lncRNA filter
  • Other (4) Apply Other filter
  • Other: Kidney (4) Apply Other: Kidney filter
  • Other: Skin (4) Apply Other: Skin filter
  • Skin (4) Apply Skin filter
  • Transcriptomics (4) Apply Transcriptomics filter
  • Alzheimer's Disease (3) Apply Alzheimer's Disease filter
  • diabetes (3) Apply diabetes filter
  • Immunology (3) Apply Immunology filter
  • Kidney (3) Apply Kidney filter
  • Memory (3) Apply Memory filter
  • other: Aging (3) Apply other: Aging filter
  • Other: Eyes (3) Apply Other: Eyes filter
  • Other: Gut (3) Apply Other: Gut filter
  • Other: Reproductive Biology (3) Apply Other: Reproductive Biology filter
  • Other: Transcriptomics (3) Apply Other: Transcriptomics filter
  • Other: Zoological Disease (3) Apply Other: Zoological Disease filter
  • Regeneration (3) Apply Regeneration filter
  • Reproductive Biology (3) Apply Reproductive Biology filter
  • Stress (3) Apply Stress filter
  • Tumor microenvironment (3) Apply Tumor microenvironment filter

Category

  • Publications (1426) Apply Publications filter
Applications of Single-Cell Sequencing in Dermatology

Medical science monitor : international medical journal of experimental and clinical research

2021 May 20

Zou, D;Qi, J;Wu, W;Xu, D;Tu, Y;Liu, T;Zhang, J;Li, X;Lu, F;He, L;
PMID: 34011922 | DOI: 10.12659/MSM.931862

Single-cell sequencing (SCS) is a promising new technique used to assess the genomics, transcriptomics, epigenetics, and other multi-omics at the single-cell level. In addition to elucidating the immune microenvironment and revealing the pathomechanisms of disease and drug resistance, SCS can profile the actual state of an individual cell and identify a novel cell type and differentiation trajectories, which cannot be achieved by bulk tissue sequencing technique. SCS technique serves as powerful tools to explore more meaningful biomarkers of diagnosis, prognosis, and new therapeutic targets in clinical practice. The SCS technique has been widely applied in the field of dermatology. In this review, we summarize the advances of SCS in dermatology.
Transcriptomic analysis and EdnrB expression in cochlear intermediate cells reveal developmental differences between inner ear and skin melanocytes

Pigment cell & melanoma research

2021 Jan 23

Renauld, JM;Davis, W;Cai, T;Cabrera, C;Basch, ML;
PMID: 33484097 | DOI: 10.1111/pcmr.12961

In the inner ear the neural crest gives rise to the glia of the VIIIth ganglion and two types of melanocytic cells: the pigmented cells of the vestibular system, and intermediate cells of the stria vascularis. We analyzed the transcriptome of neonatal intermediate cells in an effort to better understand the development of the stria vascularis. We found that expression of endothelin receptor B, which is essential for melanocyte development persists in intermediate cells long after birth. In contrast, skin melanocytes rapidly downregulate expression of EdnrB. Our findings suggest that endothelins might have coopted new functions in the inner ear during evolution of the auditory organ. This article is protected by
Analysis of SNHG14: A Long Non-Coding RNA Hosting SNORD116, Whose Loss Contributes to Prader-Willi Syndrome Etiology

Genes

2022 Dec 29

Ariyanfar, S;Good, D;
| DOI: 10.3390/genes14010097

The Small Nucleolar Host Gene 14 (SNHG14) is a host gene for small non-coding RNAs, including the SNORD116 small nucleolar C/D box RNA encoding locus. Large deletions of the SNHG14 locus, as well as microdeletions of the SNORD116 locus, lead to the neurodevelopmental genetic disorder Prader-Willi syndrome. This review will focus on the SNHG14 gene, its expression patterns, its role in human cancer, and the possibility that single nucleotide variants within the locus contribute to human phenotypes in the general population. This review will also include new in silico data analyses of the SNHG14 locus and new in situ RNA expression patterns of the Snhg14 RNA in mouse midbrain and hindbrain regions.
Emerging approaches for decoding neuropeptide transmission

Trends in neurosciences

2022 Oct 15

Girven, KS;Mangieri, L;Bruchas, MR;
PMID: 36257845 | DOI: 10.1016/j.tins.2022.09.005

Neuropeptides produce robust effects on behavior across species, and recent research has benefited from advances in high-resolution techniques to investigate peptidergic transmission and expression throughout the brain in model systems. Neuropeptides exhibit distinct characteristics which includes their post-translational processing, release from dense core vesicles, and ability to activate G-protein-coupled receptors (GPCRs). These complex properties have driven the need for development of specialized tools that can sense neuropeptide expression, cell activity, and release. Current research has focused on isolating when and how neuropeptide transmission occurs, as well as the conditions in which neuropeptides directly mediate physiological and adaptive behavioral states. Here we describe the current technological landscape in which the field is operating to decode key questions regarding these dynamic neuromodulators.
BS18 Enhanced matrix stiffness prevents vsmc contractility: how calcium signalling and microtubule stability regulate vascular compliance during ageing

Basic science

2022 Jun 01

Johnson, R;Ahmed, S;Solanki, R;Wostear, F;Afewerki, T;Warren, D;
| DOI: 10.1136/heartjnl-2022-bcs.198

Rationale DNA damage accumulation is a hallmark of vascular smooth muscle cell (VSMC) ageing. Importantly, VSMC DNA damage accumulation and ageing has been implicated in the progression of cardiovascular disease (CVD), including atherosclerosis and vascular calcification. Chemotherapy drugs used in the treatment of many cancers are known to induce DNA damage in cardiovascular cells and accelerate CVD. Histone deacetylase (HDAC) inhibitors are drugs being investigated for novel treatments of many cancers. HDACs perform many vital functions in cells; HDAC6 is known to deacetylate alpha-tubulin to regulate microtubule stability and flexibility. We have recently shown that microtubule stability regulates both VSMC morphology and contractility. Therefore, in this study we investigate the impact of HDAC6 inhibition upon VSMC function. Methodology We use polyacrylamide hydrogels (PAHs)
Contemporary Approaches to the Study of Pain

Neuromethods

2022 May 26

Ferreira, DW;Arokiaraj, CM;Seal, RP;
| DOI: 10.1007/978-1-0716-2039-7#page=50

This volume contains experimental approaches that are currently revolutionizing our understanding of the neurobiology of pain. The chapters cover many cutting-edge methods including the identification of gene expression profiles, transcriptomes or translatomes, from individual cells or defined groups of cells in rodents and primates;  the electrophysiological investigation of human tissues, such as human dorsal root ganglion neurons; ways to assess modality response profiles of neurons using calcium imaging in vitro and in vivo; and somatosensory behaviors in rodents using high-speed videography and machine learning.  In the _Neuromethods_ series style, the chapters include detailed advice from specialists to obtain successful results in your laboratory.
Capybara: A computational tool to measure cell identity and fate transitions

Cell stem cell

2022 Mar 23

Kong, W;Fu, YC;Holloway, EM;Garipler, G;Yang, X;Mazzoni, EO;Morris, SA;
PMID: 35354062 | DOI: 10.1016/j.stem.2022.03.001

Measuring cell identity in development, disease, and reprogramming is challenging as cell types and states are in continual transition. Here, we present Capybara, a computational tool to classify discrete cell identity and intermediate "hybrid" cell states, supporting a metric to quantify cell fate transition dynamics. We validate hybrid cells using experimental lineage tracing data to demonstrate the multi-lineage potential of these intermediate cell states. We apply Capybara to diagnose shortcomings in several cell engineering protocols, identifying hybrid states in cardiac reprogramming and off-target identities in motor neuron programming, which we alleviate by adding exogenous signaling factors. Further, we establish a putative in vivo correlate for induced endoderm progenitors. Together, these results showcase the utility of Capybara to dissect cell identity and fate transitions, prioritizing interventions to enhance the efficiency and fidelity of stem cell engineering.
Adaptive differentiation promotes intestinal villus recovery

Developmental cell

2022 Jan 24

Ohara, TE;Colonna, M;Stappenbeck, TS;
PMID: 35016013 | DOI: 10.1016/j.devcel.2021.12.012

Loss of differentiated cells to tissue damage is a hallmark of many diseases. In slow-turnover tissues, long-lived differentiated cells can re-enter the cell cycle or transdifferentiate to another cell type to promote repair. Here, we show that in a high-turnover tissue, severe damage to the differentiated compartment induces progenitors to transiently acquire a unique transcriptional and morphological postmitotic state. We highlight this in an acute villus injury model in the mouse intestine, where we identified a population of progenitor-derived cells that covered injured villi. These atrophy-induced villus epithelial cells (aVECs) were enriched for fetal markers but were differentiated and lineage committed. We further established a role for aVECs in maintaining barrier integrity through the activation of yes-associated protein (YAP). Notably, loss of YAP activity led to impaired villus regeneration. Thus, we define a key repair mechanism involving the activation of a fetal-like program during injury-induced differentiation, a process we term "adaptive differentiation."
New molecular techniques for exploring neuronal appetite pathways

Current Opinion in Endocrine and Metabolic Research

2022 Feb 01

Tadross, J;Lam, B;Yeo, G;
| DOI: 10.1016/j.coemr.2021.100309

Satiety and hunger are controlled by a complex and distributed neural network. The ‘standard model’ of energy homeostasis as the net product of orexigenic agouti-related protein and anorexigenic pro-opiomelanocortin neurons within the hypothalamus is the cornerstone of our understanding. It is, however, patently incomplete, and fundamental gaps exist in our understanding of the identity and organisation of cell types forming the appetitive neurocircuitry, their functions and the relevance of those identified and characterised in mice to the equivalent human neurocircuitry. Technological advances in single-cell and spatial transcriptomics, increasingly refined genetic tools for neuronal manipulation in mice, and the development of human hypothalamic cell models provide tools capable of addressing these fundamental questions and offer hope of one day approaching a ‘grand unifying theory’ of energy homeostasis.
Batrachochytrium salamandrivorans Can Devour More than Salamanders

Journal of wildlife diseases

2021 Sep 13

Towe, AE;Gray, MJ;Carter, ED;Wilber, MQ;Ossiboff, RJ;Ash, K;Bohanon, M;Bajo, BA;Miller, DL;
PMID: 34516643 | DOI: 10.7589/JWD-D-20-00214

Batrachochytrium salamandrivorans is an emerging fungus that is causing salamander declines in Europe. We evaluated whether an invasive frog species (Cuban treefrog, Osteopilus septentrionalis) that is found in international trade could be an asymptomatic carrier when exposed to zoospore doses known to infect salamanders. We discovered that Cuban treefrogs could be infected with B. salamandrivorans and, surprisingly, that chytridiomycosis developed in animals at the two highest zoospore doses. To fulfill Koch's postulates, we isolated B. salamandrivorans from infected frogs, exposed eastern newts (Notophthalmus viridescens) to the isolate, and verified infection and disease by histopathology. This experiment represents the first documentation of B. salamandrivorans chytridiomycosis in a frog species and substantially expands the conservation threat and possible mobilization of this pathogen in trade.
Is thyroid gland a target of SARS-CoV-2 infection? Results of the analysis of necropsy thyroid specimens from COVID-19 patients

Endocrine Abstracts

2021 May 15

Macedo, S;Pestana, A;Liliana, R;Neves, C;Susana, G;Guimarães, A;Dolhnikoff, M;Saldiva, P;Carneiro, F;Sobrinho-Simões, M;Soares, P;
| DOI: 10.1530/endoabs.73.oc14.3

In the 2002 outbreak of severe acute respiratory syndrome (SARS) a number of patients presented abnormalities in the thyroid functioning, neuroendocrine and calcium homeostasis. It was detected in autopsies from SARS Coronavirus (SARS-CoV) patients that the thyroid gland was significantly affected by the disease, with extensive injury and death of follicular and parafollicular cells. In the present SARS-CoV-2 pandemic some studies start to report acute thyroiditis and alterations in the levels of thyroid hormones [(triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH)]. Thyroid cells present high levels of mRNA expression of angiotensin-converting enzyme 2 (ACE2), the host receptor for SARS-CoV-2. It remains poorly studied the thyroid expression of proteins that predispose to SARS-CoV-2 infection and if thyroid cells can be a direct or indirect target of SARS-CoV-2 infection.
Methods to study circRNA-protein interactions

Methods (San Diego, Calif.)

2021 Apr 22

Ulshöfer, CJ;Pfafenrot, C;Bindereif, A;Schneider, T;
PMID: 33894379 | DOI: 10.1016/j.ymeth.2021.04.014

Circular RNAs (circRNAs) have been studied extensively in the last few years, uncovering functional roles in a diverse range of cell types and organisms. As shown for a few cases, these functions may be mediated by trans-acting factors, in particular RNA-binding proteins (RBPs). However, the specific interaction partners for most circRNAs remain unknown. This is mainly due to technical difficulties in their identification and in differentiating between interactors of circRNAs and their linear counterparts. Here we review the currently used methodology to systematically study circRNA-protein complexes (circRNPs), focusing either on a specific RNA or protein, both on the gene-specific or global level, and discuss advantages and challenges of the available approaches.

Pages

  • « first
  • ‹ previous
  • …
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?