α2δ-1 Upregulation in Primary Sensory Neurons Promotes NMDA Receptor–Mediated Glutamatergic Input in Resiniferatoxin-Induced Neuropathy
The Journal of Neuroscience
Zhang(芬张广), G;Chen(瑞陈少), S;Jin(忠金道), D;Huang(莹黄玉), Y;Chen(红陈), H;Pan(麟潘惠), H;
| DOI: 10.1523/jneurosci.0303-21.2021
Systemic treatment with resiniferatoxin (RTX) induces small-fiber sensory neuropathy by damaging TRPV1-expressing primary sensory neurons and causes distinct thermal sensory impairment and tactile allodynia, which resemble the unique clinical features of postherpetic neuralgia. However, the synaptic plasticity associated with RTX-induced tactile allodynia remains unknown. In this study, we found that RTX-induced neuropathy is associated with α2δ-1 upregulation in the dorsal root ganglion (DRG) and increased physical interaction between α2δ-1 and GluN1 in the spinal cord synaptosomes. RNAscope _in situ_ hybridization showed that RTX treatment significantly increased α2δ-1 expression in DRG neurons labeled with CGRP, IB4, NF200, and tyrosine hydroxylase. Electrophysiological recordings revealed that RTX treatment augmented the frequency of miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of evoked EPSCs in spinal dorsal horn neurons, and these effects were reversed by blocking of NMDA receptors with AP5. Inhibiting α2δ-1 with gabapentin, genetically ablating α2δ-1, or targeting α2δ-1–bound NMDA receptors with α2δ-1Tat peptide largely normalized the baseline frequency of mEPSCs and the amplitude of evoked EPSCs potentiated by RTX treatment. Furthermore, systemic treatment with memantine or gabapentin and intrathecal injection of AP5 or Tat-fused α2δ-1 C terminus peptide reversed allodynia in RTX-treated rats and mice. In addition, RTX-induced tactile allodynia was attenuated in α2δ-1 knockout mice and in mice in which GluN1 was conditionally knocked out in DRG neurons. Collectively, our findings indicate that α2δ-1–bound NMDA receptors at presynaptic terminals of sprouting myelinated afferent nerves contribute to RTX-induced potentiation of nociceptive input to the spinal cord and tactile allodynia.
Deletion of VGLUT2 in midbrain dopamine neurons attenuates dopamine and glutamate responses to methamphetamine in mice
Pharmacology, biochemistry, and behavior
Shen, H;Chen, K;Marino, RAM;McDevitt, RA;Xi, ZX;
PMID: 33444596 | DOI: 10.1016/j.pbb.2021.173104
Methamphetamine (METH) is a highly addictive psychostimulant. The continuous use of METH may lead to its abuse and neurotoxicity that have been associated with METH-induced increases in release of dopamine (DA) and glutamate in the brain. METH action in DA has been shown to be mediated by redistribution of DA from vesicles into cytoplasm via vesicular monoamine transporter 2 (VMAT2) and the subsequent reversal of membrane DA transporter (DAT), while little is known about the mechanisms underlying METH-induced glutamate release. Recent studies indicate that a subpopulation of midbrain DA neurons co-expresses VMAT2 and vesicular glutamate transporter 2 (VGLUT2). Therefore, we hypothesized that METH-induced glutamate release may in part originate from such a dual phenotype of DA neurons. To test this hypothesis, we used Cre-LoxP techniques to selectively delete VGLUT2 from midbrain DA neurons, and then examined nucleus accumbens (NAc) DA and glutamate responses to METH using in vivo brain microdialysis between DA-VGLUT2-KO mice and their VGLUT2-HET littermates. We found that selective deletion of VGLUT2 from DA neurons did not significantly alter basal levels of extracellular DA and glutamate, but attenuated METH-induced increases in extracellular levels of DA and glutamate. In addition, DA-VGLUT2-KO mice also displayed lower locomotor response to METH than VGLUT2-HET control mice. These findings, for the first time, suggest that cell-type specific VGLUT2 expression in DA neurons plays an important role in the behavioral and neurochemical effects of METH. Glutamate corelease from DA neurons may in part contributes to METH-induced increase in NAc glutamate release.
CDKL5 deficiency in forebrain glutamatergic neurons results in recurrent spontaneous seizures
Wang, HT;Zhu, ZA;Li, YY;Lou, SS;Yang, G;Feng, X;Xu, W;Huang, ZL;Cheng, X;Xiong, ZQ;
PMID: 33400301 | DOI: 10.1111/epi.16805
Mutations of the cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders characterized by intractable epilepsy, intellectual disability, and autism. Multiple mouse models generated for mechanistic studies have exhibited phenotypes similar to some human pathological features, but none of the models has developed one of the major symptoms affecting CDKL5 deficiency disorder (CDD) patients: intractable recurrent seizures. As disrupted neuronal excitation/inhibition balance is closely associated with the activity of glutamatergic and γ-aminobutyric acidergic (GABAergic) neurons, our aim was to study the effect of the loss of CDKL5 in different types of neurons on epilepsy. Using the Cre-LoxP system, we generated conditional knockout (cKO) mouse lines allowing CDKL5 deficiency in glutamatergic or GABAergic neurons. We employed noninvasive video recording and in vivo electrophysiological approaches to study seizure activity in these Cdkl5 cKO mice. Furthermore, we conducted Timm staining to confirm a morphological alteration, mossy fiber sprouting, which occurs with limbic epilepsy in both human and mouse brains. Finally, we performed whole-cell patch clamp in dentate granule cells to investigate cell-intrinsic properties and synaptic excitatory activity. We demonstrate that Emx1- or CamK2α-derived Cdkl5 cKO mice manifest high-frequency spontaneous seizure activities recapitulating the epilepsy of CDD patients, which ultimately led to sudden death in mice. However, Cdkl5 deficiency in GABAergic neurons does not generate such seizures. The seizures were accompanied by typical epileptic features including higher amplitude spikes for epileptiform discharges and abnormal hippocampal mossy fiber sprouting. We also found an increase in spontaneous and miniature excitatory postsynaptic current frequencies but no change in amplitudes in the dentate granule cells of Emx1-cKO mice, indicating enhanced excitatory synaptic activity. Our study demonstrates that Cdkl5 cKO mice, serving as an animal model to study recurrent spontaneous seizures, have potential value for the pathological study of CDD-related seizures and for therapeutic innovation.
Dynamics of papillomavirus in vivo disease formation & susceptibility to high-level disinfection-Implications for transmission in clinical settings
Egawa, N;Shiraz, A;Crawford, R;Saunders-Wood, T;Yarwood, J;Rogers, M;Sharma, A;Eichenbaum, G;Doorbar, J;
PMID: 33421945 | DOI: 10.1016/j.ebiom.2020.103177
High-level disinfection protects tens-of-millions of patients from the transmission of viruses on reusable medical devices. The efficacy of high-level disinfectants for preventing human papillomavirus (HPV) transmission has been called into question by recent publications, which if true, would have significant public health implications. Evaluation of the clinical relevance of these published findings required the development of novel methods to quantify and compare: (i) Infectious titres of lab-produced, clinically-sourced, and animal-derived papillomaviruses, (ii) The papillomavirus dose responses in the newly developed in vitro and in vivo models, and the kinetics of in vivo disease formation, and (iii) The efficacy of high-level disinfectants in inactivating papillomaviruses in these systems. Clinical virus titres obtained from cervical lesions were comparable to those obtained from tissue (raft-culture) and in vivo models. A mouse tail infection model showed a clear dose-response for disease formation, that papillomaviruses remain stable and infective on fomite surfaces for at least 8 weeks without squames and up to a year with squames, and that there is a 10-fold drop in virus titre with transfer from a fomite surface to a new infection site. Disinfectants such as ortho-phthalaldehyde and hydrogen peroxide, but not ethanol, were highly effective at inactivating multiple HPV types in vitro and in vivo. Together with comparable results presented in a companion manuscript from an independent laboratory, this work demonstrates that high-level disinfectants inactivate HPV and highlights the need for standardized and well-controlled methods to assess HPV transmission and disinfection. Advanced Sterilization Products, UK-MRC (MR/S024409/1 and MC-PC-13050) and Addenbrookes Charitable Trust.
Zhang, Y;Miller, JA;Park, J;Lelieveldt, BP;Long, B;Abdelaal, T;Aevermann, BD;Biancalani, T;Comiter, C;Dzyubachyk, O;Eggermont, J;Langseth, CM;Petukhov, V;Scalia, G;Vaishnav, ED;Zhao, Y;Lein, ES;Scheuermann, RH;
PMID: 37311768 | DOI: 10.1038/s41598-023-36638-8
With the advent of multiplex fluorescence in situ hybridization (FISH) and in situ RNA sequencing technologies, spatial transcriptomics analysis is advancing rapidly, providing spatial location and gene expression information about cells in tissue sections at single cell resolution. Cell type classification of these spatially-resolved cells can be inferred by matching the spatial transcriptomics data to reference atlases derived from single cell RNA-sequencing (scRNA-seq) in which cell types are defined by differences in their gene expression profiles. However, robust cell type matching of the spatially-resolved cells to reference scRNA-seq atlases is challenging due to the intrinsic differences in resolution between the spatial and scRNA-seq data. In this study, we systematically evaluated six computational algorithms for cell type matching across four image-based spatial transcriptomics experimental protocols (MERFISH, smFISH, BaristaSeq, and ExSeq) conducted on the same mouse primary visual cortex (VISp) brain region. We find that many cells are assigned as the same type by multiple cell type matching algorithms and are present in spatial patterns previously reported from scRNA-seq studies in VISp. Furthermore, by combining the results of individual matching strategies into consensus cell type assignments, we see even greater alignment with biological expectations. We present two ensemble meta-analysis strategies used in this study and share the consensus cell type matching results in the Cytosplore Viewer ( https://viewer.cytosplore.org ) for interactive visualization and data exploration. The consensus matching can also guide spatial data analysis using SSAM, allowing segmentation-free cell type assignment.
Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc
Eckstrand, CD;Torrevillas, BK;Wolking, RM;Bradway, DS;Warg, JV;Clayton, RD;Williams, LB;Pessier, AP;Reno, JL;McMenamin-Snekvik, KM;Thompson, J;Baszler, T;Snekvik, KR;
PMID: 37203453 | DOI: 10.1177/10406387231173332
Rapid growth in aquaculture has resulted in high-density production systems in ecologically and geographically novel conditions in which the emergence of diseases is inevitable. Well-characterized methods for detection and surveillance of infectious diseases are vital for rapid identification, response, and recovery to protect economic and food security. We implemented a proof-of-concept approach for virus detection using a known high-consequence fish pathogen, infectious salmon anemia virus (ISAV), as the archetypal pathogen. In fish infected with ISAV, we integrated histopathology, virus isolation, whole-genome sequencing (WGS), electron microscopy (EM), in situ hybridization (ISH), and reverse transcription real-time PCR (RT-rtPCR). Fresh-frozen and formalin-fixed tissues were collected from virus-infected, control, and sham-infected Atlantic salmon (Salmo salar). Microscopic differences were not evident between uninfected and infected fish. Viral cytopathic effect was observed in cell cultures inoculated with fresh-frozen tissue homogenates from 3 of 3 ISAV-infected and 0 of 4 uninfected or sham-infected fish. The ISAV genome was detected by shotgun metagenomics in RNA extracted from the medium from 3 of 3 inoculated cell cultures, 3 of 3 infected fish, and 0 of 4 uninfected or sham-infected fish, yielding sufficient coverage for de novo assembly. An ISH probe against ISAV revealed ISAV genome in multiple organs, with abundance in renal hematopoietic tissue. Virus was detected by RT-rtPCR in gill, heart, kidney, liver, and spleen. EM and metagenomic WGS from tissues were challenging and unsuccessful. Our proof-of-concept methodology has promise for detection and characterization of unknown aquatic pathogens and also highlights some associated methodology challenges that require additional investigation.
Diagnostics (Basel, Switzerland)
Sciacchitano, S;De Francesco, GP;Piane, M;Savio, C;De Vitis, C;Petrucci, S;Salvati, V;Goldoni, M;Fabiani, M;Mesoraca, A;Micolonghi, C;Torres, B;Piccinetti, A;Pippi, R;Mancini, R;
PMID: 36553004 | DOI: 10.3390/diagnostics12122997
Pseudo-anodontia consists in the clinical, not radiographic, absence of teeth, due to failure in their eruption. It has been reported as part of an extremely rare syndrome, named GAPO syndrome. Pseudo-hypoparathyroidism type 1a (PHPT-1a) is a rare condition, characterized by resistance to the parathyroid hormone (PTH), as well as to many other hormones, and resulting in hypocalcemia, hyperphosphatemia, and elevated PTH. We report here the case of a 32-year-old woman with a long-standing history of non-treated hypocalcemia, in the context of an undiagnosed PHPT-1a. She had an intellectual disability, showed clinical features of the Albright hereditary osteodystrophy (AHO) and presented signs of multiple hormone resistances. She received treatment for seizures since the age of six. Examination of her mouth revealed a complete absence of teeth. Treatment of hypocalcemia and hormone deficiencies were started only at 29 years of age. Genetic testing demonstrated the presence of a frameshift variant in the GNAS gene in the proband as well as in her mother. A Single Nucleotide Polymorphism (SNP) array analysis failed to demonstrate pathogenic copy number variants (CNVs) but showed several regions with loss of heterozygosity (LOHs) for a final percentage of 1.75%, compatible with a fifth degree of relationship. Clinical exome sequencing (CES) ruled out any damaging variants in all the teeth agenesis-related genes. In conclusion, although we performed an extensive genetic analysis in search of possible additional gene alterations that could explain the presence of the peculiar phenotypic characteristics observed in our patient, we could not find any additional genetic defects. Our results suggest that the association of genetically confirmed PHPT-1a and complete pseudo-anodontia associated with persistent patchy alopecia areata is a new additional nonclassical feature related to the GNAS pathogenic variant.
Behavioural Brain Research
Blount, H;Dee, J;Wu, L;Schwendt, M;Knackstedt, L;
| DOI: 10.1016/j.bbr.2022.114090
Despite the higher prevalence of post-traumatic stress disorder (PTSD) in women, the majority of preclinical research has been conducted utilizing male subjects. We have found that male rats exposed to the predator scent 2,4,5-trimethyl-3-thiazoline (TMT) show heterogenous long-term anxiety-like behavior and conditioned fear to the TMT environment. Stress-Resilient males exhibit increased mGlu5 mRNA expression in the basolateral amygdala (BLA) and prefrontal cortex (PFC). Here we sought to determine whether the same behavioral and genetic responses would be observed in female rats exposed to TMT. Female Sprague-Dawley rats were exposed to TMT for ten minutes, while Controls were exposed to an unscented environment. Anxiety and anhedonia were assessed 7-14 days later with elevated plus maze (EPM), acoustic startle response, light-dark box, and sucrose preference test (SPT). TMT-exposed females spent less time in the EPM open arms, exhibited greater startle amplitude, and reduced sucrose intake compared to Controls. Median split analyses conducted on EPM and SPT data yielded stress-Susceptible and -Resilient phenotypes that displayed behavior in the light-dark box consistent with EPM and SPT behavior. Susceptible females displayed greater BLA mGlu5 mRNA expression than Resilient and Control rats and did not show conditioned fear, in contrast to previous results in males. Resilient females displayed greater mGlu5 mRNA expression in the nucleus accumbens. These data indicate that the predator scent stress model of PTSD produces distinct stress-Susceptible and Resilient phenotypes in female rats that are associated with changes in mGlu5 mRNA expression in several brain regions.
Xie, W;Medeiros, LJ;Li, S;Tang, G;Fan, G;Xu, J;
PMID: 35884893 | DOI: 10.3390/biomedicines10071587
The programmed death-ligands, PD-L1 and PD-L2, reside on tumor cells and can bind with programmed death-1 protein (PD-1) on T-cells, resulting in tumor immune escape. PD-1 ligands are highly expressed in some CD30+ large cell lymphomas, including classic Hodgkin lymphoma (CHL), primary mediastinal large B-cell lymphoma (PMBL), Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (EBV+ DLBCL), and anaplastic large cell lymphoma (ALCL). The genetic alteration of the chromosome 9p24.1 locus, the location of PD-L1, PD-L2, and JAK2 are the main mechanisms leading to PD-L1 and PD-L2 overexpression and are frequently observed in these CD30+ large cell lymphomas. The JAK/STAT pathway is also commonly constitutively activated in these lymphomas, further contributing to the upregulated expression of PD-L1 and PD-L2. Other mechanisms underlying the overexpression of PD-L1 and PD-L2 in some cases include EBV infection and the activation of the mitogen-activated protein kinase (MAPK) pathway. These cellular and molecular mechanisms provide a scientific rationale for PD-1/PD-L1 blockade in treating patients with relapsed/refractory (R/R) disease and, possibly, in newly diagnosed patients. Given the high efficacy of PD-1 inhibitors in patients with R/R CHL and PMBL, these agents have become a standard treatment in these patient subgroups. Preliminary studies of PD-1 inhibitors in patients with R/R EBV+ DLBCL and R/R ALCL have also shown promising results. Future directions for these patients will likely include PD-1/PD-L1 blockade in combination with other therapeutic agents, such as brentuximab or traditional chemotherapy regimens.
Klass, M;Davis, J;Tardiff, J;
| DOI: 10.1016/j.bpj.2021.11.1466
Cardiac troponin T (cTnT) is a protein of the cardiac thin filament (CTF) and assists in conferring calcium regulation to muscle contraction. Mutations in cTnT often cause hypertrophic cardiomyopathy (HCM), a disease affecting 1/500 people worldwide. This study focuses on six HCM-causing, highly penetrant mutations located within the cTnT N-terminus (R94H/C, R92L/W/Q, and I79N) which are each associated with distinct phenotypes and severities in human patients. The goal of this study was to determine the effects of HCMcausing mutations in cTnT on the calcium-based regulation of muscle activation. Using fluorescently labeled, bacterially expressed, recombinant human protein, we measured in vitro calcium exchange (sensitivity via spectrofluorimetry and kinetics via stopped-flow) of human cTn and CTF complexes in the presence and absence of these disease-causing mutations. Disease-causing HCM mutations in cTn complexes alone resulted in no significant changes in either calcium sensitivity or calcium dissociation kinetics compared to wildtype (WT) controls. Alternatively, in the CTF every mutation significantly sensitized TnC to calcium. These results indicate that actin and tropomyosin are necessary to observe the effects of mutations on CTF activation. Although all mutations significantly increased calcium sensitivity of CTFs, four mutations (R92L/Q and R94H/C) significantly decreased the rate of calcium dissociation (1.2-1.5 fold), whereas two mutations significantly accelerated calcium dissociation (1.1-1.4 fold). Three mutations significantly accelerated calcium association (R92W, I79N, and R94C) 2.8-4.5 fold while a fourth trended with a slight, albeit functionally significant acceleration (R94H) at 2.0 fold. Thus, the calcium sensitization reported here for each mutation is accomplished via mutation-specific changes to the kinetics of calcium exchange with TnC. Furthermore, these results suggest that the kinetics of calcium exchange with TnC in the CTF system afford high resolution, mutation-specific mechanistic insight into altered myofilament calcium sensitivity that may ultimately facilitate targeted interventions.
Cancer immunology, immunotherapy : CII
Gartrell, RD;Blake, Z;Rizk, EM;Perez-Lorenzo, R;Weisberg, SP;Simoes, I;Esancy, C;Fu, Y;Davari, DR;Barker, L;Finkel, G;Mondal, M;Minns, HE;Wang, SW;Fullerton, BT;Lozano, F;Chiuzan, C;Horst, B;Saenger, YM;
PMID: 34999916 | DOI: 10.1007/s00262-021-03088-y
Talimogene Laherparepvec (OncoVEXmGMCSF), an oncolytic virus, immune checkpoint inhibitor anti-programmed cell death protein 1 (anti-PD1), and BRAF inhibition (BRAFi), are all clinically approved for treatment of melanoma patients and are effective through diverse mechanisms of action. Individually, these therapies also have an effect on the tumor immune microenvironment (TIME). Evaluating the combination effect of these three therapies on the TIME can help determine when combination therapy is most appropriate for further study. In this study, we use a transgenic murine melanoma model (Tyr::CreER; BRAFCA/+; PTENflox/flox), to evaluate the TIME in response to combinations of BRAFi, anti-PD1, and OncoVEXmGMCSF. We find that mice treated with the triple combination BRAFi + anti-PD1 + OncoVEXmGMCSF have decreased tumor growth compared to BRAFi alone and prolonged survival compared to control. Flow cytometry shows an increase in percent CD8 + /CD3 + cytotoxic T Lymphocytes (CTLs) and a decrease in percent FOXP3 + /CD4 + T regulatory cells (Tregs) in tumors treated with OncoVEXmGMCSF compared to mice not treated with OncoVEXmGMCSF. Immunogenomic analysis at 30d post-treatment shows an increase in Th1 and interferon-related genes in mice receiving OncoVEXmGMCSF + BRAFi. In summary, treatment with combination BRAFi + anti-PD1 + OncoVEXmGMCSF is more effective than any single treatment in controlling tumor growth, and groups receiving OncoVEXmGMCSF had more tumoral infiltration of CTLs and less intratumoral Tregs in the TIME. This study provides rational basis to combine targeted agents, oncolytic viral therapy, and checkpoint inhibitors in the treatment of melanoma.
Persistence of Lgr5+ colonic epithelial stem cells in mouse models of inflammatory bowel disease
American journal of physiology. Gastrointestinal and liver physiology
Girish, N;Liu, CY;Gadeock, S;Gomez, ML;Huang, Y;Sharifkhodaei, Z;Washington, MK;Polk, DB;
PMID: 34260310 | DOI: 10.1152/ajpgi.00248.2020
Intestinal mucosal healing is the primary therapeutic goal of medical treatments for inflammatory bowel disease (IBD). Epithelial stem cells are key players in the healing process. Lgr5+ stem cells maintain cellular turnover during homeostasis in the colonic crypt. However, they are lost and dispensable for repair in a wide variety of injury models, including dextran sulfate sodium (DSS) colitis, radiation, helminth infection, and T-cell activation. The direct loss of Lgr5+ cells activates a plasticity response in the epithelium in which other cell types can serve as stem cells. Whether this paradigm applies to mouse models of IBD remains unknown. In contrast to previously tested models, IBD models involve an inflammatory response rooted in the loss of immunologic tolerance to intestinal luminal contents including the microbiome. Here we show the persistence of Lgr5+ cells in oxazolone, TNBS, and Il10-/- and Il10-/- Tnfr1-/- IBD models. This contrasts with results obtained from DSS-induced injury. Through high-throughput expression profiling, we find that these colitis models were associated with distinct patterns of cytokine expression. Direct exposure of colonic epithelial organoids to DSS, oxazolone, or TNBS resulted in increased apoptosis and loss of Lgr5+ cells. Targeted ablation of Lgr5+ cells resulted in severe exacerbation of chronic, antibody-induced IL-10-deficient colitis, but had only modest effects in TNBS-induced colitis. These results show that distinct mouse models of IBD-like colitis induce different patterns of Lgr5+ stem cell retention and function.