Zhang, C;Wei, B;Liu, Z;Yao, W;Li, Y;Lu, J;Ge, C;Yu, X;Li, D;Zhu, Y;Shang, C;Jin, N;Li, X;
PMID: 36721152 | DOI: 10.1186/s12985-023-01971-x
Coronavirus disease 2019 is a global pandemic caused by SARS-CoV-2. The emergence of its variant strains has posed a considerable challenge to clinical treatment. Therefore, drugs capable of inhibiting SARS-CoV-2 infection, regardless of virus variations, are in urgently need. Our results showed that the endosomal acidification inhibitor, Bafilomycin A1 (Baf-A1), had an inhibitory effect on the viral RNA synthesis of SARS-CoV-2, and its Beta and Delta variants at the concentration of 500 nM. Moreover, the human lung xenograft mouse model was used to investigate the anti-SARS-CoV-2 effect of Baf-A1. It was found that Baf-A1 significantly inhibited SARS-CoV-2 replication in the human lung xenografts by in situ hybridization and RT-PCR assays. Histopathological examination showed that Baf-A1 alleviated SARS-CoV-2-induced diffuse inflammatory infiltration of granulocytes and macrophages and alveolar endothelial cell death in human lung xenografts. In addition, immunohistochemistry analysis indicated that Baf-A1 decreased inflammatory exudation and infiltration in SARS-CoV-2-infected human lung xenografts. Therefore, Baf-A1 may be a candidate drug for SARS-CoV-2 treatment.
Mao, Q;Chu, S;Shapiro, S;Young, L;Russo, M;De Paepe, ME;
PMID: 34929459 | DOI: 10.1016/j.placenta.2021.12.002
Recent evidence supports the - rare - occurrence of vertical transplacental SARS-CoV-2 transmission. We previously determined that placental expression of angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor, and associated viral cell entry regulators is upregulated by hypoxia. In the present study, we utilized a clinically relevant model of SARS-CoV-2-associated chronic histiocytic intervillositis/massive perivillous fibrin deposition (CHIV/MPFVD) to test the hypothesis that placental hypoxia may facilitate placental SARS-CoV-2 infection.We performed a comparative immunohistochemical and/or RNAscope in-situ hybridization analysis of carbonic anhydrase IX (CAIX, hypoxia marker), ACE2 and SARS-CoV-2 expression in free-floating versus fibrin-encased chorionic villi in a 20-weeks' gestation placenta with SARS-CoV-2-associated CHIV/MPVFD.The levels of CAIX and ACE2 immunoreactivity were significantly higher in trophoblastic cells of fibrin-encased villi than in those of free-floating villi, consistent with hypoxia-induced ACE2 upregulation. SARS-CoV-2 showed a similar preferential localization to trophoblastic cells of fibrin-encased villi.The localization of SARS-CoV-2 to hypoxic, fibrin-encased villi in this placenta with CHIV/MPVFD suggests placental infection and, therefore, transplacental SARS-CoV-2 transmission may be promoted by hypoxic conditions, mediated by ACE2 and similar hypoxia-sensitive viral cell entry mechanisms. Understanding of a causative link between placental hypoxia and SARS-CoV-2 transmittability may potentially lead to the development of alternative strategies for prevention of intrauterine COVID-19 transmission.
McDonald, JT;Enguita, FJ;Taylor, D;Griffin, RJ;Priebe, W;Emmett, MR;Sajadi, MM;Harris, AD;Clement, J;Dybas, JM;Aykin-Burns, N;Guarnieri, JW;Singh, LN;Grabham, P;Baylin, SB;Yousey, A;Pearson, AN;Corry, PM;Saravia-Butler, A;Aunins, TR;Sharma, S;Nagpal, P;Meydan, C;Foox, J;Mozsary, C;Cerqueira, B;Zaksas, V;Singh, U;Wurtele, ES;Costes, SV;Davanzo, GG;Galeano, D;Paccanaro, A;Meinig, SL;Hagan, RS;Bowman, NM;UNC COVID-19 Pathobiology Consortium, ;Wolfgang, MC;Altinok, S;Sapoval, N;Treangen, TJ;Moraes-Vieira, PM;Vanderburg, C;Wallace, DC;Schisler, JC;Mason, CE;Chatterjee, A;Meller, R;Beheshti, A;
PMID: 34624208 | DOI: 10.1016/j.celrep.2021.109839
MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.
Evidence for residual SARS-CoV-2 in glioblastoma tissue of a convalescent patient
Lei, J;Liu, Y;Xie, T;Yao, G;Wang, G;Diao, B;Song, J;
PMID: 33994523 | DOI: 10.1097/WNR.0000000000001654
Since coronavirus disease 2019 (COVID-19) swept all over the world, several studies have shown the susceptibility of a patient with cancer to COVID-19. In this case, the removed glioblastoma multiforme (GBM)-adjacent (GBM-A), GBM-peritumor and GBM-central (GBM-C) tissues from a convalescent patient of COVID-19, who also suffered from glioblastoma meanwhile, together with GBM-A and GBM tissues from a patient without COVID-19 history as negative controls, were used for RNA ISH, electron microscopy observing and immunohistochemical staining of ACE2 and the virus antigen (N protein). The results of RNA ISH, electron microscopy observing showed that SARS-CoV-2 directly infects some cells within human GBM tissues and SARS-CoV-2 in GBM-C tissue still exists even when it is cleared elsewhere. Immunohistochemical staining of ACE2 and N protein showed that the expressions of ACE2 are significantly higher in specimens, including GBM-C tissue from COVID-19 patient than other types of tissue. The unique phenomenon suggests that the surgical protection level should be upgraded even if the patient is in a convalescent period and the pharyngeal swab tests show negative results. Furthermore, more attention should be paid to confirm whether the shelter-like phenomenon happens in other malignancies due to the similar microenvironment and high expression of ACE2 in some malignancies.
Richner JM, Jagger BW, Shan C, Fontes CR, Dowd KA, Cao B, Himansu S, Caine EA, Nunes BTD, Medeiros DBA, Muruato AE, Foreman BM, Luo H, Wang T, Barrett AD, Weaver SC, Vasconcelos PFC, Rossi SL, Ciaramella G, Mysorekar IU, Pierson TC, Shi PY, Diamond MS.
PMID: 28708997 | DOI: 10.1016/j.cell.2017.06.040
The emergence of Zika virus (ZIKV) and its association with congenital malformations has prompted the rapid development of vaccines. Although efficacy with multiple viral vaccine platforms has been established in animals, no study has addressed protection during pregnancy. We tested in mice two vaccine platforms, a lipid nanoparticle-encapsulated modified mRNA vaccine encoding ZIKV prM and E genes and a live-attenuated ZIKV strain encoding an NS1 protein without glycosylation, for their ability to protect against transmission to the fetus. Vaccinated dams challenged with a heterologous ZIKV strain at embryo day 6 (E6) and evaluated at E13 showed markedly diminished levels of viral RNA in maternal, placental, and fetal tissues, which resulted in protection against placental damage and fetal demise. As modified mRNA and live-attenuated vaccine platforms can restrict in utero transmission of ZIKV in mice, their further development in humans to prevent congenital ZIKV syndrome is warranted.
Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J, Uccellini MB, Tripathi S, Morrison J, Yount BL, Dinnon KH 3rd, Rückert C, Young MC, Zhu Z, Robertson SJ, McNally KL, Ye J, Cao B, Mysorekar IU, Ebel GD, Baric RS, Best SM, Artyomov MN, Garcia-S
PMID: 29746837 | DOI: 10.1016/j.chom.2018.04.003
Progress toward understanding Zika virus (ZIKV) pathogenesis is hindered by lack of immunocompetent small animal models, in part because ZIKV fails to effectively antagonize Stat2-dependent interferon (IFN) responses in mice. To address this limitation, we first passaged an African ZIKV strain (ZIKV-Dak-41525) through Rag1-/- mice to obtain a mouse-adapted virus (ZIKV-Dak-MA) that was more virulent than ZIKV-Dak-41525 in mice treated with an anti-Ifnar1 antibody. A G18R substitution in NS4B was the genetic basis for the increased replication, and resulted in decreased IFN-β production, diminished IFN-stimulated gene expression, and the greater brain infection observed with ZIKV-Dak-MA. To generate a fully immunocompetent mouse model of ZIKV infection, human STAT2 was introduced into the mouse Stat2 locus (hSTAT2 KI). Subcutaneous inoculation of pregnant hSTAT2 KI mice with ZIKV-Dak-MA resulted in spread to the placenta and fetal brain. An immunocompetent mouse model of ZIKV infection may prove valuable for evaluating countermeasures to limit disease.
Matusali G, Houzet L, Satie AP, Mahé D, Aubry F, Couderc T, Frouard J, Bourgeau S, Bensalah K, Lavoué S, Joguet G, Bujan L, Cabié A, Avelar GF, Lecuit M, Le Tortorec A, Dejucq-Rainsford N.
PMID: 30063220 | DOI: 10.1172/JCI121735
Zika virus (ZIKV) is a teratogenic mosquito-borne flavivirus which can be sexually transmitted from man to woman. High viral loads and prolonged viral shedding in semen suggest that ZIKV replicates within the human male genital tract, but its target organs are unknown. Using ex vivo infection of organotypic cultures, we demonstrated here that ZIKV replicates in human testicular tissue and infects a broad range of cell types, including germ cells, which we also identified as infected in the semen from ZIKV-infected donors. ZIKV had no major deleterious effect on the morphology and hormonal production of the human testis explants. Infection induced a broad antiviral response but no interferon up-regulation and minimal pro-inflammatory response in testis explants, with no cytopathic effect. Finally, we studied ZIKV infection in mouse testis, and compared it to human infection. This study provides key insights into how ZIKV may persist in semen and alter semen parameters, as well as a valuable tool for testing antiviral agents.
Journal of neuropathology and experimental neurology
Normandin, E;Valizadeh, N;Rudmann, EA;Uddin, R;Dobbins, ST;MacInnis, BL;Padera, RF;Siddle, KJ;Lemieux, JE;Sabeti, PC;Mukerji, SS;Solomon, IH;
PMID: 36847705 | DOI: 10.1093/jnen/nlad015
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continually evolving resulting in variants with increased transmissibility, more severe disease, reduced effectiveness of treatments or vaccines, or diagnostic detection failure. The SARS-CoV-2 Delta variant (B.1.617.2 and AY lineages) was the dominant circulating strain in the United States from July to mid-December 2021, followed by the Omicron variant (B.1.1.529 and BA lineages). Coronavirus disease 2019 (COVID-19) has been associated with neurological sequelae including loss of taste/smell, headache, encephalopathy, and stroke, yet little is known about the impact of viral strain on neuropathogenesis. Detailed postmortem brain evaluations were performed for 22 patients from Massachusetts, including 12 who died following infection with Delta variant and 5 with Omicron variant, compared to 5 patients who died earlier in the pandemic. Diffuse hypoxic injury, occasional microinfarcts and hemorrhage, perivascular fibrinogen, and rare lymphocytes were observed across the 3 groups. SARS-CoV-2 protein and RNA were not detected in any brain samples by immunohistochemistry, in situ hybridization, or real-time quantitative PCR. These results, although preliminary, demonstrate that, among a subset of severely ill patients, similar neuropathological features are present in Delta, Omicron, and non-Delta/non-Omicron variant patients, suggesting that SARS-CoV-2 variants are likely to affect the brain by common neuropathogenic mechanisms.
Gynecologic and obstetric investigation
Shen, WB;Turan, S;Wang, B;Cojocaru, L;Harman, C;Logue, J;Reece, EA;Frieman, MB;Yang, P;
PMID: 35526532 | DOI: 10.1159/000524905
Studies indicate a very low rate of SARS-CoV-2 detection in the placenta or occasionally a low rate of vertical transmission in COVID-19 pregnancy. SARS-CoV-2 Delta variant has become a dominant strain over the world and possesses higher infectivity due to mutations in its spike receptor-binding motif.To determine whether SARS-CoV-2 Delta variant has increased potential for placenta infection and vertical transmission, we analyzed SARS-CoV-2 infection in the placenta, umbilical cord, and fetal membrane from a case that unvaccinated mother and her neonate were COVID-19 positive. A 35-year-old primigravida with COVID-19 underwent an emergent cesarean delivery due to placental abruption in the setting of premature rupture of membranes. The neonate tested positive for SARS-CoV-2 within the first 24 hours, and then again on days of life 2, 6, 13, and 21. The placenta exhibited intervillositis, increased fibrin deposition, and syncytiotrophoblast necrosis. Sequencing of viral RNA from fixed placental tissue revealed SAR-CoV-2 B.1.167.2 (Delta) variant. Both spike protein and viral RNA were abundantly present in syncytiotrophoblasts, cytotrophoblasts, umbilical cord vascular endothelium, and fetal membranes.We report with strong probability the first SARS-CoV-2 Delta variant transplacental transmission. Placental cells exhibited extensive apoptosis, senescence, and ferroptosis after SARS-CoV-2 Delta infection.S. Karger AG, Basel.
Intravenous, Intratracheal, and Intranasal Inoculation of Swine with SARS-CoV-2
Buckley, A;Falkenberg, S;Martins, M;Laverack, M;Palmer, MV;Lager, K;Diel, DG;
PMID: 34452371 | DOI: 10.3390/v13081506
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the susceptibility of animals and their potential to act as reservoirs or intermediate hosts for the virus has been of significant interest. Pigs are susceptible to multiple coronaviruses and have been used as an animal model for other human infectious diseases. Research groups have experimentally challenged swine with human SARS-CoV-2 isolates with results suggesting limited to no viral replication. For this study, a SARS-CoV-2 isolate obtained from a tiger which is identical to human SARS-CoV-2 isolates detected in New York City and contains the D614G S mutation was utilized for inoculation. Pigs were challenged via intravenous, intratracheal, or intranasal routes of inoculation (n = 4/route). No pigs developed clinical signs, but at least one pig in each group had one or more PCR positive nasal/oral swabs or rectal swabs after inoculation. All pigs in the intravenous group developed a transient neutralizing antibody titer, but only three other challenged pigs developed titers greater than 1:8. No gross or histologic changes were observed in tissue samples collected at necropsy. In addition, no PCR positive samples were positive by virus isolation. Inoculated animals were unable to transmit virus to naïve contact animals. The data from this experiment as well as from other laboratories supports that swine are not likely to play a role in the epidemiology and spread of SARS-CoV-2.
The Skin as a critical window in unveiling the pathophysiologic principles of COVID-19
Magro, C;Nuovo, G;Mulvey, J;Laurence, J;Harp, J;Neil Crowson, A;
| DOI: 10.1016/j.clindermatol.2021.07.001
The severe acute respiratory distress syndrome-associated coronavirus-2 (SARS-CoV-2), the etiologic agent of Coronavirus disease 2019 (COVID-19), is a single-stranded RNA virus whose sequence is known. COVID-19 is associated with a heterogeneous clinical phenotype ranging from asymptomatic to fatal disease. It appears that access to nasopharyngeal respiratory epithelia expressing angiotensin-converting enzyme (ACE) 2, the receptor for SARS CoV-2, is followed by viral replication in the pulmonary alveolar septal capillary bed. We have shown in prior studies that incomplete viral particles, termed pseudovirions, dock to deep subcutaneous and other vascular beds potentially contributing to the prothrombotic state and systemic complement activation that characterizes severe and critical COVID-19. A variety of skin rashes have been described in the setting of SARS-CoV-2 infection and more recently, following COVID-19 vaccination. The vaccines deliver a laboratory synthesized mRNA that encodes a protein that is identical to the spike glycoprotein of SARS-COV-2 allowing the production of immunogenic spike glycoprotein that will then elicit T cell and B cell adaptive immune responses. In this paper we review an array of cutaneous manifestations of COVID-19 that provide an opportunity to study critical pathophysiologic mechanisms that underlie all clinical facets of COVID-19 ranging from asymptomatic/mild to severe and critical COVID-19. We classify cutaneous COVID-19 according to underlying pathophysiologic principles. In this regard we propose two main pathways: 1) complement mediated thrombotic vascular injury syndromes deploying the alternative and mannan binding lectin pathways in the setting of severe and critical COVID-19 and 2) the robust T cell and type I interferon driven inflammatory and humoral driven immune complex mediated vasculitic cutaneous reactions seen with mild and moderate COVID-19. Novel data on cutaneous vaccine reactions are presented that manifest a clinical and morphologic parallel with similar eruptions seen in patients suffering from mild and moderate COVID-19 and in most cases represent systemic eczematoid hypersensitivity reactions to a putative vaccine based antigen. Finally, we show for the first time the localization of human synthesized spike glycoprotein following the COVID-19 vaccine to the cutaneous and subcutaneous vasculature confirming the ability of SARS CoV-2 spike glycoprotein to bind endothelium in the absence of intact virus.
Forebrain neural precursor cells are differentially vulnerable to Zika virus infection
Shelton, SM;Soucy, AR;Kurzion, R;Zeldich, E;Connor, JH;Haydar, TF;
PMID: 34272257 | DOI: 10.1523/ENEURO.0108-21.2021
Prenatal exposure to Zika virus (ZIKV) can result in microencephaly and congenital Zika syndrome, though some brain cells and structures are spared by the virus for unknown reasons. Here, a novel murine model of fetal ZIKV infection incorporating intraventricular infection and cell type specific in utero electroporation was used to identify the time course of ZIKV infection and to determine the identity of cells that are initially infected or spared during neocortical neurogenesis. In vivo time course studies revealed the presence of ZIKV in apical radial glial cells (aRGCs) at early time points following virus exposure, while basal intermediate progenitor cells (bIPCs) became maximally (ZIKV+) after 3 days of virus exposure. ZIKV-infected fetal brains exhibited microencephaly as early as one day following infection, regardless of developmental age. This change in brain size was caused in part by apoptosis and reduced proliferation that persisted until birth. While 60% of aRGC basal fibers were perturbed during infection, 40% retained normal morphology, indicating that aRGCs are not uniformly vulnerable to ZIKV infection. To investigate this heterogeneous vulnerability, we performed genetic fate mapping using cell type-specific probes derived from a mouse E15.5 neocortical wall single cell RNA-Seq dataset. The results indicate that one class of aRGCs preferentially express the putative ZIKV entry receptor AXL, and that these cells are more vulnerable to ZIKV infection than other aRGC subtypes with low AXL expression. Together, these data uncover crucial temporal and cellular details of ZIKV fetal brain infection for prevention strategies and for management of congenital Zika syndrome.Significance StatementThe transcriptional signatures of neural precursor cells were utilized for the first time to test Zika virus susceptibility in a direct fetal brain infection model. This novel methodology allowed for elucidation of time point specific differences in neural precursor cell susceptibility that have been debated in the field. Additionally, elucidation of cell morphological features using in utero electroporation revealed substantial but incomplete interruption of basal fibers, a finding that implies interference with neuronal migration. The model presented here, allows for assessment of pre-natal development after exposure to a variety of viruses. The improved specificity of apical radial glial cell labeling afforded by the cell-specific labeling tools uncover functional differences between apical radial glial cell types that will have important implications for children exposed to ZIKV as well as for understanding corticogenesis.