ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Sci Transl Med
2020 Feb 19
Wang Z1, Jiang C1, He Q1, Matsuda M1, Han Q1, Wang K1, Bang S1, Ding H2, Ko MC2,3, Ji RR4,5,6.
PMID: 32075945 | DOI: 10.1126/scitranslmed.aaw6471
Journal of neuroscience research
2021 May 06
Cooper, AH;Hedden, NS;Corder, G;Lamerand, SR;Donahue, RR;Morales-Medina, JC;Selan, L;Prasoon, P;Taylor, BK;
PMID: 33957003 | DOI: 10.1002/jnr.24846
Mol Psychiatry
2019 May 29
Shi MM, Fan KM, Qiao YN, Xu JH, Qiu LJ, Li X, Liu Y, Qian ZQ, Wei CL, Han J, Fan J, Tian YF, Ren W, Liu ZQ.
PMID: 31142818 | DOI: 10.1038/s41380-019-0435-z
Stressful life events induce abnormalities in emotional and cognitive behaviour. The endogenous opioid system plays an essential role in stress adaptation and coping strategies. In particular, the µ-opioid receptor (μR), one of the major opioid receptors, strongly influences memory processing in that alterations in μR signalling are associated with various neuropsychiatric disorders. However, it remains unclear whether μR signalling contributes to memory impairments induced by acute stress. Here, we utilized pharmacological methods and cell-type-selective/non-cell-type-selective μR depletion approaches combined with behavioural tests, biochemical analyses, and in vitro electrophysiological recordings to investigate the role of hippocampal μR signalling in memory-retrieval impairment induced by acute elevated platform (EP) stress in mice. Biochemical and molecular analyses revealed that hippocampal μRs were significantly activated during acute stress. Blockage of hippocampal μRs, non-selective deletion of μRs or selective deletion of μRs on GABAergic neurons (μRGABA) reversed EP-stress-induced impairment of memory retrieval, with no effect on the elevation of serum corticosterone after stress. Electrophysiological results demonstrated that stress depressed hippocampal GABAergic synaptic transmission to CA1 pyramidal neurons, thereby leading to excitation/inhibition (E/I) imbalance in a μRGABA-dependent manner. Pharmaceutically enhancing hippocampal GABAAreceptor-mediated inhibitory currents in stressed mice restored their memory retrieval, whereas inhibiting those currents in the unstressed mice mimicked the stress-induced impairment of memory retrieval. Our findings reveal a novel pathway in which endogenous opioids recruited by acute stress predominantly activate μRGABA to depress GABAergic inhibitory effects on CA1 pyramidal neurons, which subsequently alters the E/I balance in the hippocampus and results in impairment of memory retrieval.
Neurobiology of Sleep and Circadian Rhythms
2022 Jun 01
Berezin, C;Bergum, N;Luchini, K;Curdts, S;Korkis, C;Vigh, J;
| DOI: 10.1016/j.nbscr.2022.100078
Pain.
2018 Aug 01
Severino A, Chen W, Hakimian JK, Kieffer BL, Gaveriaux-Ruff C, Walwyn W, Marvizón JCG.
PMID: 29677019 | DOI: 10.1097/j.pain.0000000000001247
The latent sensitization model of chronic pain reveals that recovery from some types of long-term hyperalgesia is an altered state in which nociceptive sensitization persists but is suppressed by the ongoing activity of analgesic receptors such as μ-opioid receptors (MORs). To determine whether these MORs are the ones present in nociceptive afferents, we bred mice expressing Cre-recombinase under the Nav1.8 channel promoter (Nav1.8cre) with MOR-floxed mice (flMOR). These Nav1.8cre/flMOR mice had reduced MOR expression in primary afferents, as revealed by quantitative PCR, in situ hybridization, and immunofluorescence colocalization with the neuropeptide calcitonin gene-related peptide. We then studied the recovery from chronic pain of these mice and their flMOR littermates. When Nav1.8cre/flMOR mice were injected in the paw with complete Freund adjuvant they developed mechanical hyperalgesia that persisted for more than 2 months, whereas the responses of flMOR mice returned to baseline after 3 weeks. We then used the inverse agonist naltrexone to assess ongoing MOR activity. Naltrexone produced a robust reinstatement of hyperalgesia in control flMOR mice, but produced no effect in the Nav1.8/flMOR males and a weak reinstatement of hyperalgesia in Nav1.8/flMOR females. Naltrexone also reinstated swelling of the hind paw in flMOR mice and female Nav1.8cre/flMOR mice, but not male Nav1.8cre/flMOR mice. The MOR agonist DAMGO inhibited substance P release in flMOR mice but not Nav1.8cre/flMOR mice, demonstrating a loss of MOR function at the central terminals of primary afferents. We conclude that MORs in nociceptive afferents mediate an ongoing suppression of hyperalgesia to produce remission from chronic pain.
eLife
2022 Mar 09
Harb, K;Richter, M;Neelagandan, N;Magrinelli, E;Harfoush, H;Kuechler, K;Henis, M;Hermanns-Borgmeyer, I;Calderon de Anda, F;Duncan, K;
PMID: 35262486 | DOI: 10.7554/eLife.55199
Cells
2023 May 17
Murlanova, K;Jouroukhin, Y;Novototskaya-Vlasova, K;Huseynov, S;Pletnikova, O;Morales, M;Guan, Y;Kamiya, A;Bergles, D;Dietz, D;Pletnikov, M;
| DOI: 10.3390/cells12101412
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
2023 Jun 03
Alvarez-Bagnarol, Y;García, R;Vendruscolo, LF;Morales, M;
PMID: 37270620 | DOI: 10.1038/s41386-023-01620-5
Neuroscience bulletin
2022 Dec 16
Chen, J;Gannot, N;Li, X;Zhu, R;Zhang, C;Li, P;
PMID: 36522525 | DOI: 10.1007/s12264-022-00994-8
eNeuro
2022 Jun 01
Du, Y;Yu, K;Yan, C;Wei, C;Zheng, Q;Qiao, Y;Liu, Y;Han, J;Ren, W;Liu, Z;
PMID: 35613854 | DOI: 10.1523/ENEURO.0487-21.2022
Biological Psychiatry
2016 Dec 26
Charbogne P, Gardon O, Martín-García E, Keyworth HL, Matsui A, Mechling AE, Bienert T, Nasseef T, Robé A, Moquin L, Darcq E, Hamida SB, Robledo P, Matifas A, Befort K, Gavériaux-Ruff , Harsan LA, Von Everfeldt D, Hennig J, Gratton A, Kitchen I, Bailey A,
PMID: - | DOI: 10.1016/j.biopsych.2016.12.022
Mu opioid receptors (MORs) are central to pain control, drug reward and addictive behaviors, but underlying circuit mechanisms have been poorly explored by genetic approaches. Here we investigate the contribution of MORs expressed in GABAergic forebrain neurons to major biological effects of opiates, and also challenge the canonical disinhibition model of opiate reward.
We used Dlx5/6-mediated recombination to create conditional Oprm1 mice in GABAergic forebrain neurons. We characterized the genetic deletion by histology, electrophysiology and microdialysis, probed neuronal activation by c-Fos immunohistochemistry and resting state-functional magnetic resonance imaging, and investigated main behavioral responses to opiates, including motivation to obtain heroin and palatable food.
Mutant mice showed MOR transcript deletion mainly in the striatum. In the ventral tegmental area (VTA), local MOR activity was intact, and reduced activity was only observed at the level of striatonigral afferents. Heroin-induced neuronal activation was modified at both sites, and whole-brain functional networks were altered in live animals. Morphine analgesia was not altered, neither was physical dependence to chronic morphine. In contrast, locomotor effects of heroin were abolished, and heroin-induced catalepsy was increased. Place preference to heroin was not modified, but remarkably, motivation to obtain heroin and palatable food was enhanced in operant self-administration procedures.
Our study reveals dissociable MOR functions across mesocorticolimbic networks. Thus beyond a well-established role in reward processing, operating at the level of local VTA neurons, MORs also moderate motivation for appetitive stimuli within forebrain circuits that drive motivated behaviors.
Journal of Neuroscience
2018 Feb 26
Pfarr S, Schaaf L, Reinert JK, Paul E, Herrmannsdörfer F, Roßmanith M, Kuner T, Hansson AC, Spanagel R, Körber C, Sommer WH.
PMID: - | DOI: Fos Bcl11b Rgs8
Cue-reward associations form distinct memories that can drive appetitive behaviors and are involved in craving for both drugs and natural rewards. Distinct sets of neurons, so called neuronal ensembles, in the infralimbic area (IL) of the medial prefrontal cortex play a key role in alcohol seeking. Whether this ensemble is specific for alcohol or controls reward seeking in general remains unclear. Here, we compared IL ensembles formed upon recall of drug (alcohol) or natural reward (saccharin) memories in male Wistar rats. Using an experimental framework that allows identification of two distinct reward-associated ensembles within the same animal, we found that cue-induced seeking of either alcohol or saccharin activated ensembles of similar size and organization, whereby these ensembles consist of largely overlapping neuronal populations. Thus, the IL seems to act as a general integration hub for reward seeking behavior, but also contains subsets of neurons that encode for the different rewards.
SIGNIFICANCE STATEMENT
Cue-reward associations form distinct memories that can act as drivers of appetitive behaviors and are involved in craving for natural rewards as well as for drugs. Distinct sets of neurons, so called neuronal ensembles, in the infralimbic area of the medial prefrontal cortex play a key role in cue-triggered reward seeking. However, it is unclear whether these ensembles act as broadly tuned controllers of approach behavior or represent the learned associations between specific cues and rewards. Using an experimental framework that allows identification of two distinct reward-associated ensembles within the same animal we find largely overlapping neuronal populations. Repeated activation by two distinct events could reflect the linking of the two memory traces within the same neuron.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com