Yoshimoto, S;Morita, H;Okamura, K;Hiraki, A;Hashimoto, S;
| DOI: 10.1016/j.labinv.2022.100023
Ameloblastoma (AB) is the most common benign, epithelial odontogenic tumor that occurs in the jawbone. AB is a slow-growing, benign epithelial tumor but shows locally invasive growth, with bone resorption or recurrence if not adequately resected. From these points of view, understanding the mechanism of AB-induced bone resorption is necessary for better clinical therapy and improving patients’ quality of life. In bone resorption, osteoclasts play critical roles, and RANKL is a pivotal regulator of osteoclastogenesis. However, the source of RANKL-expressing cells in the AB tumor microenvironment is controversial, and the mechanism of osteoclastogenesis in AB progression is not fully understood. In this study, we investigated the distribution of the RNA expression of RANKL in AB specimens. We found that PDGFRα- and S100A4-positive stromal fibroblasts expressed RANKL in the AB tumor microenvironment. Moreover, we analyzed the mechanisms of osteoclastogenesis in the AB tumor microenvironment using the human AB cell line AM-1 and a human primary periodontal ligament fibroblast cells. The results of histopathologic and in vitro studies clarified that the interaction between AB cells and stromal fibroblasts upregulated IL-6 expression and that AB cells induced RANKL expression in stromal fibroblasts and consequent osteoclastogenesis in AB progression.
Harb, K;Richter, M;Neelagandan, N;Magrinelli, E;Harfoush, H;Kuechler, K;Henis, M;Hermanns-Borgmeyer, I;Calderon de Anda, F;Duncan, K;
PMID: 35262486 | DOI: 10.7554/eLife.55199
In the neocortex, functionally distinct areas process specific types of information. Area identity is established by morphogens and transcriptional master regulators, but downstream mechanisms driving area-specific neuronal specification remain unclear. Here, we reveal a role for RNA-binding proteins in defining area-specific cytoarchitecture. Mice lacking Pum2 or overexpressing human TDP-43 show apparent 'motorization' of layers IV and V of primary somatosensory cortex (S1), characterized by dramatic expansion of cells co-expressing Sox5 and Bcl11b/Ctip2, a hallmark of subcerebral projection neurons, at the expense of cells expressing the layer IV neuronal marker Rorβ. Moreover, retrograde labeling experiments with cholera toxin B in Pum2; Emx1-Cre and TDP43A315T mice revealed a corresponding increase in subcerebral connectivity of these neurons in S1. Intriguingly, other key features of somatosensory area identity are largely preserved, suggesting that Pum2 and TDP-43 may function in a downstream program, rather than controlling area identity per se. Transfection of primary neurons and in utero electroporation (IUE) suggest cell-autonomous and post-mitotic modulation of Sox5, Bcl11b/Ctip2, and Rorβ levels. Mechanistically, we find that Pum2 and TDP-43 directly interact with and affect the translation of mRNAs encoding Sox5, Bcl11b/Ctip2, and Rorβ. In contrast, effects on the levels of these mRNAs were not detectable in qRT-PCR or single-molecule fluorescent in situ hybridization assays, and we also did not detect effects on their splicing or polyadenylation patterns. Our results support the notion that post-transcriptional regulatory programs involving translational regulation and mediated by Pum2 and TDP-43 contribute to elaboration of area-specific neuronal identity and connectivity in the neocortex.
NK-B cell cross talk induces CXCR5 expression on natural killer cells
Rascle, P;Jacquelin, B;Petitdemange, C;Contreras, V;Planchais, C;Lazzerini, M;Dereuddre-Bosquet, N;Le Grand, R;Mouquet, H;Huot, N;Müller-Trutwin, M;
| DOI: 10.1016/j.isci.2021.103109
B cell follicles (BCFs) in lymph nodes (LNs) are generally exempt of CD8+ T and NK cells. African green monkeys (AGMs), a natural host of simian immunodeficiency virus (SIV), display NK cell-mediated viral control in BCF. NK cell migration into BCF in chronically SIVagm-infected AGM is associated with CXCR5+ NK cells. We aimed to identify the mechanism leading to CXCR5 expression on NK cells. We show that CXCR5+ NK cells in LN were induced following SIVagm infection. CXCR5+ NK cells accumulated preferentially in BCF with proliferating B cells. Autologous NK-B cell co-cultures in transwell chambers induced CXCR5+ NK cells. Transcriptome analysis of CXCR5+ NK cells revealed expression of bcl6 and IL6R. IL-6 induced CXCR5 on AGM and human NK cells. IL6 mRNA was detected in LN at higher levels during SIVagm than SIVmac infection and often produced by plasma cells. Our study reveals a mechanism of B cell-dependent NK cell regulation.
The Skin as a critical window in unveiling the pathophysiologic principles of COVID-19
Magro, C;Nuovo, G;Mulvey, J;Laurence, J;Harp, J;Neil Crowson, A;
| DOI: 10.1016/j.clindermatol.2021.07.001
The severe acute respiratory distress syndrome-associated coronavirus-2 (SARS-CoV-2), the etiologic agent of Coronavirus disease 2019 (COVID-19), is a single-stranded RNA virus whose sequence is known. COVID-19 is associated with a heterogeneous clinical phenotype ranging from asymptomatic to fatal disease. It appears that access to nasopharyngeal respiratory epithelia expressing angiotensin-converting enzyme (ACE) 2, the receptor for SARS CoV-2, is followed by viral replication in the pulmonary alveolar septal capillary bed. We have shown in prior studies that incomplete viral particles, termed pseudovirions, dock to deep subcutaneous and other vascular beds potentially contributing to the prothrombotic state and systemic complement activation that characterizes severe and critical COVID-19. A variety of skin rashes have been described in the setting of SARS-CoV-2 infection and more recently, following COVID-19 vaccination. The vaccines deliver a laboratory synthesized mRNA that encodes a protein that is identical to the spike glycoprotein of SARS-COV-2 allowing the production of immunogenic spike glycoprotein that will then elicit T cell and B cell adaptive immune responses. In this paper we review an array of cutaneous manifestations of COVID-19 that provide an opportunity to study critical pathophysiologic mechanisms that underlie all clinical facets of COVID-19 ranging from asymptomatic/mild to severe and critical COVID-19. We classify cutaneous COVID-19 according to underlying pathophysiologic principles. In this regard we propose two main pathways: 1) complement mediated thrombotic vascular injury syndromes deploying the alternative and mannan binding lectin pathways in the setting of severe and critical COVID-19 and 2) the robust T cell and type I interferon driven inflammatory and humoral driven immune complex mediated vasculitic cutaneous reactions seen with mild and moderate COVID-19. Novel data on cutaneous vaccine reactions are presented that manifest a clinical and morphologic parallel with similar eruptions seen in patients suffering from mild and moderate COVID-19 and in most cases represent systemic eczematoid hypersensitivity reactions to a putative vaccine based antigen. Finally, we show for the first time the localization of human synthesized spike glycoprotein following the COVID-19 vaccine to the cutaneous and subcutaneous vasculature confirming the ability of SARS CoV-2 spike glycoprotein to bind endothelium in the absence of intact virus.
The American journal of psychiatry
Kim, SH;An, K;Namkung, H;Saito, A;Rannals, MD;Moore, JR;Mihaljevic, M;Saha, S;Oh, S;Kondo, MA;Ishizuka, K;Yang, K;Maher, BJ;Niwa, M;Sawa, A;
PMID: 36128683 | DOI: 10.1176/appi.ajp.21010053
Deficits in social cognition consistently underlie functional disabilities in a wide range of psychiatric disorders. Neuroimaging studies have suggested that the anterior insula is a "common core" brain region that is impaired across neurological and psychiatric disorders, which include social cognition deficits. Nevertheless, neurobiological mechanisms of the anterior insula for social cognition remain elusive. This study aims to fill this knowledge gap.To determine the role of the anterior insula in social cognition, the authors manipulated expression of Cyp26B1, an anterior insula-enriched molecule that is crucial for retinoic acid degradation and is involved in the pathology of neuropsychiatric conditions. Social cognition was mainly assayed using the three-chamber social interaction test. Multimodal analyses were conducted at the molecular, cellular, circuitry, and behavioral levels.At the molecular and cellular level, anterior insula-mediated social novelty recognition is maintained by proper activity of the layer 5 pyramidal neurons, for which retinoic acid-mediated gene transcription can play a role. The authors also demonstrate that oxytocin influences the anterior insula-mediated social novelty recognition, although not by direct projection of oxytocin neurons, nor by direct diffusion of oxytocin to the anterior insula, which contrasts with the modes of oxytocin regulation onto the posterior insula. Instead, oxytocin affects oxytocin receptor-expressing neurons in the dorsal raphe nucleus, where serotonergic neurons are projected to the anterior insula. Furthermore, the authors show that serotonin 5-HT2C receptor expressed in the anterior insula influences social novelty recognition.The anterior insula plays a pivotal role in social novelty recognition that is partly regulated by a local retinoic acid cascade but also remotely regulated by oxytocin via a long-range circuit mechanism.
O'Toole, A;Mohamed, F;Zhang, J;Brown, C;
| DOI: 10.2139/ssrn.4199232
To detail early tissue distribution and innate immune response to rabbit hemorrhagic disease virus 2 (RHDV2), 13 rabbits were orally ( Oryctolagus cuniculus ) inoculated with liver homogenate made from a feral rabbit that succumbed to RHDV2 during the 2020 outbreak in Oregon, USA. Rabbits were monitored regularly, with euthanasia and collection of tissues and swabs, at 12, 24, 36, 48, 96, and 144 hours post inoculation. Livers from these rabbits were positive by RT-rtPCR for presence of the virus. Using RNAscope for viral and replicative intermediates, rabbits had detectable viral genomic RNA at each time point, initially within the gastrointestinal tract, then in the liver by 36 hours post inoculation. Also using RNAscope, there were increasing amounts of mRNA coding for TNF-α, IL-6, and IL-1β within the liver and spleen through 48 hours post inoculation. The results of this study aided our understanding of the local innate immune response to RHDV2, as well as aspects of pathogenesis.