ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nature
2022 May 01
García-Añoveros, J;Clancy, JC;Foo, CZ;García-Gómez, I;Zhou, Y;Homma, K;Cheatham, MA;Duggan, A;
PMID: 35508658 | DOI: 10.1038/s41586-022-04668-3
eLife
2022 Mar 09
Harb, K;Richter, M;Neelagandan, N;Magrinelli, E;Harfoush, H;Kuechler, K;Henis, M;Hermanns-Borgmeyer, I;Calderon de Anda, F;Duncan, K;
PMID: 35262486 | DOI: 10.7554/eLife.55199
Journal of Neuroscience
2018 Feb 26
Pfarr S, Schaaf L, Reinert JK, Paul E, Herrmannsdörfer F, Roßmanith M, Kuner T, Hansson AC, Spanagel R, Körber C, Sommer WH.
PMID: - | DOI: Fos Bcl11b Rgs8
Cue-reward associations form distinct memories that can drive appetitive behaviors and are involved in craving for both drugs and natural rewards. Distinct sets of neurons, so called neuronal ensembles, in the infralimbic area (IL) of the medial prefrontal cortex play a key role in alcohol seeking. Whether this ensemble is specific for alcohol or controls reward seeking in general remains unclear. Here, we compared IL ensembles formed upon recall of drug (alcohol) or natural reward (saccharin) memories in male Wistar rats. Using an experimental framework that allows identification of two distinct reward-associated ensembles within the same animal, we found that cue-induced seeking of either alcohol or saccharin activated ensembles of similar size and organization, whereby these ensembles consist of largely overlapping neuronal populations. Thus, the IL seems to act as a general integration hub for reward seeking behavior, but also contains subsets of neurons that encode for the different rewards.
SIGNIFICANCE STATEMENT
Cue-reward associations form distinct memories that can act as drivers of appetitive behaviors and are involved in craving for natural rewards as well as for drugs. Distinct sets of neurons, so called neuronal ensembles, in the infralimbic area of the medial prefrontal cortex play a key role in cue-triggered reward seeking. However, it is unclear whether these ensembles act as broadly tuned controllers of approach behavior or represent the learned associations between specific cues and rewards. Using an experimental framework that allows identification of two distinct reward-associated ensembles within the same animal we find largely overlapping neuronal populations. Repeated activation by two distinct events could reflect the linking of the two memory traces within the same neuron.
Elife
2019 Feb 21
Henderson NT, Le Marchand SJ, Hruska M, Hippenmeyer S, Luo L, Dalva MB.
PMID: 30789343 | DOI: 10.7554/eLife.41563
Cortical networks are characterized by sparse connectivity, with synapses found at only a subset of axo-dendritic contacts. Yet within these networks, neurons can exhibit high connection probabilities, suggesting that cell-intrinsic factors, not proximity, determine connectivity. Here, we identify ephrin-B3 (eB3) as a factor that determines synapse density by mediating a cell-cell competition that requires ephrin-B-EphB signaling. In a microisland culture system designed to isolate cell-cell competition, we find that eB3 determines winning and losing neurons in a contest for synapses. In a Mosaic Analysis with Double Markers (MADM) genetic mouse model system in vivo the relative levels of eB3 control spine density in layer 5 and 6 neurons. MADM cortical neurons in vitro reveal that eB3 controls synapse density independently of action potential-driven activity. Our findings illustrate a new class of competitive mechanism mediated by trans-synaptic organizing proteins which control the number of synapses neurons receive relative to neighboring neurons.
The American journal of psychiatry
2022 Sep 21
Kim, SH;An, K;Namkung, H;Saito, A;Rannals, MD;Moore, JR;Mihaljevic, M;Saha, S;Oh, S;Kondo, MA;Ishizuka, K;Yang, K;Maher, BJ;Niwa, M;Sawa, A;
PMID: 36128683 | DOI: 10.1176/appi.ajp.21010053
Research square
2023 Feb 21
Kim, H;Saikia, J;Monte, K;Ha, E;Romaus-Sanjurjo, D;Sanchez, J;Moore, A;Hernaiz-Llorens, M;Chavez-Martinez, C;Agba, C;Li, H;Lusk, D;Cervantes, K;Zheng, B;
PMID: 36865182 | DOI: 10.21203/rs.3.rs-2588274/v1
Nature
2021 Jun 23
Di Bella, DJ;Habibi, E;Stickels, RR;Scalia, G;Brown, J;Yadollahpour, P;Yang, SM;Abbate, C;Biancalani, T;Macosko, EZ;Chen, F;Regev, A;Arlotta, P;
PMID: 34163074 | DOI: 10.1038/s41586-021-03670-5
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com