Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (77)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • (-) Remove ZIKV filter ZIKV (46)
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • (-) Remove GFP filter GFP (26)
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope 2.5 HD Red assay (20) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope Fluorescent Multiplex Assay (14) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (9) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope (5) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (4) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 VS Assay (2) Apply RNAscope 2.5 VS Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (1) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

Research area

  • Infectious Disease (43) Apply Infectious Disease filter
  • Neuroscience (32) Apply Neuroscience filter
  • Inflammation (5) Apply Inflammation filter
  • Cancer (3) Apply Cancer filter
  • Development (3) Apply Development filter
  • Infectious (3) Apply Infectious filter
  • Other (3) Apply Other filter
  • CGT (2) Apply CGT filter
  • Injury (2) Apply Injury filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Developmental (1) Apply Developmental filter
  • Feeding Behavior (1) Apply Feeding Behavior filter
  • Hypoxia (1) Apply Hypoxia filter
  • Infectious Disease: Zika Virus (1) Apply Infectious Disease: Zika Virus filter
  • Innate Immunity (1) Apply Innate Immunity filter
  • Liver (1) Apply Liver filter
  • Neural Mapping (1) Apply Neural Mapping filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Progenitor Cells (1) Apply Progenitor Cells filter
  • Regeneration (1) Apply Regeneration filter
  • Sensory Neuroscience (1) Apply Sensory Neuroscience filter
  • Sighing (1) Apply Sighing filter
  • Stem Cells (1) Apply Stem Cells filter
  • Transcriptomics (1) Apply Transcriptomics filter
  • Zika (1) Apply Zika filter
  • Zika Virus (1) Apply Zika Virus filter

Category

  • Publications (77) Apply Publications filter
Zika virus infects renal proximal tubular epithelial cells with prolonged persistency and cytopathic effects

Emerg Microbes Infect.

2017 Aug 23

Chen J, Yang YF, Chen J, Zhou X, Dong Z, Chen T, Yang Y, Zou P, Jiang B, Hu Y, Lu L, Zhang X, Liu J, Xu J, Zhu T.
PMID: 28831192 | DOI: 10.1038/emi.2017.67

Zika virus (ZIKV) infection can cause fetal developmental abnormalities and Guillain-Barré syndrome in adults. Although progress has been made in understanding the link between ZIKV infection and microcephaly, the pathology of ZIKV, particularly the viral reservoirs in human, remains poorly understood. Several studies have shown that compared to serum samples, patients' urine samples often have a longer duration of ZIKV persistency and higher viral load. This finding suggests that an independent viral reservoir may exist in the human urinary system. Despite the clinical observations, the host cells of ZIKV in the human urinary system are poorly characterized. In this study, we demonstrate that ZIKV can infect renal proximal tubular epithelial cells (RPTEpiCs) in immunodeficient mice in vivo and in both immortalized and primary human renal proximal tubular epithelial cells (hRPTEpiCs) in vitro. Importantly, ZIKV infection in mouse kidneys caused caspase-3-mediated apoptosis of renal cells. Similarly, in vitro infection of immortalized and primary hRPTEpiCs resulted in notable cytopathic effects. Consistent with the clinical observations, we found that ZIKV infection can persist with prolonged duration in hRPTEpiCs. RNA-Seq analyses of infected hRPTEpiCs revealed a large number of transcriptional changes in response to ZIKV infection, including type I interferon signaling genes and anti-viral response genes. Our results suggest that hRPTEpiCs are a potential reservoir of ZIKV in the human urinary system, providing a possible explanation for the prolonged persistency of ZIKV in patients' urine.

Zika virus causes acute infection and inflammation in the ovary of mice without apparent defects in fertility.

J Infect Dis.

2019 May 07

Caine EA, Scheaffer SM, Broughton DE, Salazar V, Govero J, Poddar S, Osula A, Halabi J, Skaznik-Wikiel ME, Diamond MS, Moley KH.
PMID: 31063544 | DOI: 10.1093/infdis/jiz239

Zika virus (ZIKV) has become a global concern because infection of pregnant mothers was linked to congenital birth defects. ZIKV is unique from other flaviviruses, as it is transmitted vertically and sexually in addition to by mosquito vectors. Prior studies in mice, non-human primates, and humans have shown that ZIKV targets the testis in males, resulting in persistent infection and oligospermia. However, its effects on the corresponding female gonads have not been evaluated. Here, we assessed the effects of ZIKV on the ovary in non-pregnant mice. During the acute phase, ZIKV productively infected the ovary causing accumulation of CD4+ and virus-specific CD8+ T cells. T cells protected against ZIKV infection in the ovary, as higher viral burden was measured in CD8-/- and TCRβδ-/- mice. Increased cell death and tissue inflammation in the ovary was observed during the acute phase of infection, but this normalized over time. In contrast to that observed with males, minimal persistence and no long-term consequences of ZIKV infection on ovarian follicular reserve or fertility were demonstrated in this model. Thus, although ZIKV replicates in cells of the ovary and causes acute oophoritis, there is rapid resolution and no long-term effects on fertility, at least in mice.

GPR-160 Receptor Signaling in the Dorsal Vagal Complex of Male Rats Modulates Meal Microstructure and CART-Mediated Hypophagia

Nutrients

2023 May 11

Sanchez-Navarro, MJ;Borner, T;Reiner, BC;Crist, RC;Samson, WK;Yosten, GLC;Stein, L;Hayes, MR;
PMID: 37242151 | DOI: 10.3390/nu15102268

The g-protein coupled receptor GPR-160, recently identified as a putative receptor for the cocaine and amphetamine-regulated transcript (CART) peptide, shows abundant expression in the energy-balance control nuclei, including the dorsal vagal complex (DVC). However, its physiological role in the control of food intake has yet to be fully explored. Here, we performed a virally mediated, targeted knockdown (KD) of Gpr160 in the DVC of male rats to evaluate its physiological role in control of feeding. Our results indicate that DVC Gpr160 KD affects meal microstructure. Specifically, DVC Gpr160 KD animals consumed more frequent, but shorter meals during the dark phase and showed decreased caloric intake and duration of meals during the light phase. Cumulatively, however, these bidirectional effects on feeding resulted in no difference in body weight gain. We next tested the role of DVC GPR-160 in mediating the anorexigenic effects of exogenous CART. Our results show that DVC Gpr160 KD partially attenuates CART's anorexigenic effects. To further characterize Gpr160+ cells in the DVC, we utilized single-nucleus RNA sequencing data to uncover abundant GPR-160 expression in DVC microglia and only minimal expression in neurons. Altogether, our results suggest that DVC CART signaling may be mediated by Gpr160+ microglia, which in turn may be modulating DVC neuronal activity to control food intake.
Mucosal Responses to Zika Virus Infection in Cynomolgus Macaques

Pathogens (Basel, Switzerland)

2022 Sep 12

Berry, N;Stein, M;Ferguson, D;Ham, C;Hall, J;Giles, E;Kempster, S;Adedeji, Y;Almond, N;Herrera, C;
PMID: 36145466 | DOI: 10.3390/pathogens11091033

Zika virus (ZIKV) cases continue to be reported, and no vaccine or specific antiviral agent has been approved for the prevention or treatment of infection. Though ZIKV is primarily transmitted by mosquitos, cases of sexual transmission and prolonged viral RNA presence in semen have been reported. In this observational study, we report the mucosal responses to sub-cutaneous and mucosal ZIKV exposure in cynomolgus macaques during acute and late chronic infection. Subcutaneous challenge induced a decrease in the growth factor VEGF in colorectal and cervicovaginal tissues 100 days post-challenge, in contrast to the observed increase in these tissues following vaginal infection. This different pattern was not observed in the uterus, where VEGF was upregulated independently of the challenge route. Vaginal challenge induced a pro-inflammatory profile in all mucosal tissues during late chronic infection. Similar responses were already observed during acute infection in a vaginal tissue explant model of ex vivo challenge. Non-productive and productive infection 100 days post-in vivo vaginal challenge induced distinct proteomic profiles which were characterized by further VEGF increase and IL-10 decrease in non-infected animals. Ex vivo challenge of mucosal explants revealed tissue-specific modulation of cytokine levels during the acute phase of infection. Mucosal cytokine profiles could represent biosignatures of persistent ZIKV infection.
Zika virus infection damages the testes in mice.

Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH, Diamond MS.

2016 Oct 31

Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH, Diamond MS.
PMID: 27798603 | DOI: 10.1038/nature20556

Zika virus (ZIKV) infection of pregnant women can cause congenital malformations including microcephaly, which has focused global attention on this emerging pathogen1. In addition to transmission by mosquitoes, ZIKV can be detected in the seminal fluid of affected males for extended periods of time and transmitted sexually2. Here, using a mouse-adapted African ZIKV strain (Dakar 41519), we evaluated the consequences of infection in the male reproductive tract of mice. We observed persistence of ZIKV, but not the closely related Dengue virus (DENV), in the testis and epididymis of male mice, and this was associated with tissue injury that caused diminished testosterone and inhibin B levels, and oligospermia. ZIKV preferentially infected spermatogonia, primary spermatocytes, and Sertoli cells in the testis, resulting in cell death and destruction of the seminiferous tubules. Less damage was observed with a contemporary Asian ZIKV strain (H/PF/2013), in part because this virus replicates less efficiently in mice. The extent to which these observations in mice translate to humans remains unclear, but longitudinal studies of sperm function and viability in ZIKV-infected humans seem warranted.

The cannabinoid-1 receptor is abundantly expressed in striatal striosomes and striosome-dendron bouquets of the substantia nigra

PLoS One.

2018 Feb 21

Davis MI, Crittenden JR, Feng AY, Kupferschmidt DA, Naydenov A, Stella N, Graybiel AM, Lovinger DM.
PMID: 29466446 | DOI: 10.1371/journal.pone.0191436

Presynaptic cannabinoid-1 receptors (CB1-R) bind endogenous and exogenous cannabinoids to modulate neurotransmitter release. CB1-Rs are expressed throughout the basal ganglia, including striatum and substantia nigra, where they play a role in learning and control of motivated actions. However, the pattern of CB1-R expression across different striatal compartments, microcircuits and efferent targets, and the contribution of different CB1-R-expressing neurons to this pattern, are unclear. We use a combination of conventional techniques and novel genetic models to evaluate CB1-R expression in striosome (patch) and matrix compartments of the striatum, and in nigral targets of striatal medium spiny projection neurons (MSNs). CB1-R protein and mRNA follow a descending dorsolateral-to-ventromedial intensity gradient in the caudal striatum, with elevated expression in striosomes relative to the surrounding matrix. The lateral predominance of striosome CB1-Rs contrasts with that of the classical striosomal marker, the mu opioid receptor (MOR), which is expressed most prominently in rostromedial striosomes. The dorsolateral-to-ventromedial CB1-R gradient is similar to Drd2 dopamine receptor immunoreactivity and opposite to Substance P. This topology of CB1-R expression is maintained downstream in the globus pallidus and substantia nigra. Dense CB1-R-expressing striatonigral fibers extend dorsally within the substantia nigra pars reticulata, and colocalize with bundles of ventrally extending, striosome-targeted, dendrites of dopamine-containing neurons in the substantia nigra pars compacta (striosome-dendron bouquets). Within striatum, CB1-Rs colocalize with fluorescently labeled MSN collaterals within the striosomes. Cre recombinase-mediated deletion of CB1-Rs from cortical projection neurons or MSNs, and MSN-selective reintroduction of CB1-Rs in knockout mice, demonstrate that the principal source of CB1-Rs in dorsolateral striosomes is local MSN collaterals. These data suggest a role for CB1-Rs in caudal dorsolateral striosome collaterals and striosome-dendron bouquet projections to lateral substantia nigra, where they are anatomically poised to mediate presynaptic disinhibition of both striosomal MSNs and midbrain dopamine neurons in response to endocannabinoids and cannabinomimetics.

Sonic Hedgehog Agonist Protects Against Complex Neonatal Cerebellar Injury

Cerebellum.

2017 Nov 13

Nguyen V, Sabeur K, Maltepe E, Ameri K, Bayraktar O, Rowitch DH.
PMID: 29134361 | DOI: 10.1007/s12311-017-0895-0

The cerebellum undergoes rapid growth during the third trimester and is vulnerable to injury and deficient growth in infants born prematurely. Factors associated with preterm cerebellar hypoplasia include chronic lung disease and postnatal glucocorticoid administration. We modeled chronic hypoxemia and glucocorticoid administration in neonatal mice to study whole cerebellar and cell type-specific effects of dual exposure. Chronic neonatal hypoxia resulted in permanent cerebellar hypoplasia. This was compounded by administration of prednisolone as shown by greater volume loss and Purkinje cell death. In the setting of hypoxia and prednisolone, administration of a small molecule Smoothened-Hedgehog agonist (SAG) preserved cerebellar volume and protected against Purkinje cell death. Such protective effects were observed even when SAG was given as a one-time dose after dual insult. To model complex injury and determine cell type-specific roles for the hypoxia inducible factor (HIF) pathway, we performed conditional knockout of von Hippel Lindau (VHL) to hyperactivate HIF1α in cerebellar granule neuron precursors (CGNP) or Purkinje cells. Surprisingly, HIF activation in either cell type resulted in no cerebellar deficit. However, in mice administered prednisolone, HIF overactivation in CGNPs resulted in significant cerebellar hypoplasia, whereas HIF overactivation in Purkinje cells caused cell death. Together, these findings indicate that HIF primes both cell types for injury via glucocorticoids, and that hypoxia/HIF + postnatal glucocorticoid administration act on distinct cellular pathways to cause cerebellar injury. They further suggest that SAG is neuroprotective in the setting of complex neonatal cerebellar injury.

Zika virus infection in Tupaia belangeri causes dermatological manifestations and confers protection against secondary infection.

J Virol.

2019 Feb 06

Zhang NN, Zhang L, Deng YQ, Feng Y, Ma F, Wang Q, Ye Q, Han Y, Sun X, Zhang FC, Qi X, Wang G, Dai J, Xia X, Qin CF.
PMID: 30728253 | DOI: 10.1128/JVI.01982-18

Animal models of Zika virus (ZIKV) infection have recently been established in mice, guinea pigs, and nonhuman primates. Tree shrews (Tupaia belangeri) are an emerging experimental animal in biomedical applications, but their susceptibility to ZIKV infection has not been explored. In the present study, we showed that subcutaneous inoculation of ZIKV led to rapid viremia and viral secretion in saliva, as well as to typical dermatological manifestations characterized by massive diffuse skin rash on the trunk. Global transcriptomic sequencing of peripheral blood mononuclear cells isolated from ZIKV-infected animals revealed systematic gene expression changes related to the inflammatory response and dermatological manifestations. Importantly, ZIKV infection readily triggered the production of high-titer neutralizing antibodies, thus preventing secondary homologous infection, in tree shrews. However, neonatal tree shrews succumbed to ZIKV challenge upon intracerebral infection. The tree shrew model described here recapitulates the most common dermatological manifestations observed in ZIKV-infected patients and may greatly facilitate the elucidation of ZIKV pathogenesis and the development of novel vaccines and therapeutics.IMPORTANCEThe reemergence of Zika virus (ZIKV) has caused a global public health crisis since 2016, and there are currently no vaccines or antiviral drugs to prevent or treat ZIKV infection. However, considerable advances have been made in understanding the biology and pathogenesis of ZIKV infection. In particular, various animal models have been successfully established to mimic ZIKV infection and its associated neurological diseases and to evaluate potential countermeasures. However, the clinical symptoms in these mouse and nonhuman primate models are different from the common clinical manifestations seen in human ZIKV patients; in particular, dermatological manifestations are rarely recapitulated in these animal models. Here, we developed a new animal model of ZIKV infection in tree shrews, a rat-sized, primate-related mammal. In vitro and in vivo characterization of ZIKV infection in tree shrews established a direct link between ZIKV infection and the immune responses and dermatological manifestations. The tree shrew model described here, as well as other available animal models, provides a valuable platform to study ZIKV pathogenesis and to evaluate vaccines and therapeutics.

Zika virus shedding in the stool and infection through the anorectal mucosa in mice.

Emerg Microbes Infect. 2018 Oct 17;7(1):169.

2018 Oct 17

Li C, Deng YQ, Zu S, Quanquin N, Shang J, Tian M, Ji X, Zhang NN, Dong HL, Xu YP, Zhao LZ, Zhang FC, Li XF, Wu A, Cheng G, Qin CF.
PMID: 30333476 | DOI: 10.1038/s41426-018-0170-6

Zika virus (ZIKV) has elicited global concern due to its unique biological features, unusual transmission routes, and unexpected clinical outcomes. Although ZIKV transmission through anal intercourse has been reported in humans, it remains unclear if ZIKV is detectable in the stool, if it can infect the host through the anal canal mucosa, and what the pathogenesis of such a route of infection might be in the mouse model. Herein, we demonstrate that ZIKV RNA can be recovered from stools in multiple mouse models, as well as from the stool of a ZIKV patient. Remarkably, intra-anal (i.a.) inoculation with ZIKV leads to efficient infection in both Ifnar1-/- and immunocompetent mice, characterized by extensive viral replication in the blood and multiple organs, including the brain, small intestine, testes, and rectum, as well as robust humoral and innate immune responses. Moreover, i.a. inoculation of ZIKV in pregnant mice resulted in transplacental infection and delayed fetal development. Overall, our results identify the anorectal mucosa as a potential site of ZIKV infection in mice, reveal the associated pathogenesis of i.a. infection, and highlight the complexity of ZIKV transmission through anal intercourse.
IL-6-GP130 signaling protects human hepatocytes against lipid droplet accumulation in humanized liver models

Science advances

2023 Apr 14

Carbonaro, M;Wang, K;Huang, H;Frleta, D;Patel, A;Pennington, A;Desclaux, M;Moller-Tank, S;Grindley, J;Altarejos, J;Zhong, J;Polites, G;Poueymirou, W;Jaspers, S;Kyratsous, C;Zambrowicz, B;Murphy, A;Lin, JC;Macdonald, LE;Daly, C;Sleeman, M;Thurston, G;Li, Z;
PMID: 37058568 | DOI: 10.1126/sciadv.adf4490

Liver steatosis is an increasing health issue with few therapeutic options, partly because of a paucity of experimental models. In humanized liver rodent models, abnormal lipid accumulation in transplanted human hepatocytes occurs spontaneously. Here, we demonstrate that this abnormality is associated with compromised interleukin-6 (IL-6)-glycoprotein 130 (GP130) signaling in human hepatocytes because of incompatibility between host rodent IL-6 and human IL-6 receptor (IL-6R) on donor hepatocytes. Restoration of hepatic IL-6-GP130 signaling, through ectopic expression of rodent IL-6R, constitutive activation of GP130 in human hepatocytes, or humanization of an Il6 allele in recipient mice, substantially reduced hepatosteatosis. Notably, providing human Kupffer cells via hematopoietic stem cell engraftment in humanized liver mice also corrected the abnormality. Our observations suggest an important role of IL-6-GP130 pathway in regulating lipid accumulation in hepatocytes and not only provide a method to improve humanized liver models but also suggest therapeutic potential for manipulating GP130 signaling in human liver steatosis.
Amygdala AVPR1A mediates susceptibility to chronic social isolation in females

bioRxiv : the preprint server for biology

2023 Feb 15

François, M;Delgado, IC;Lafond, A;Lewis, EM;Kuromaru, M;Hassouna, R;Deng, S;Thaker, VV;Dölen, G;Zeltser, LM;
PMID: 36824966 | DOI: 10.1101/2023.02.15.528679

Females are more sensitive to social exclusion, which could contribute to their heightened susceptibility to anxiety disorders. Chronic social isolation stress (CSIS) for at least 7 weeks after puberty induces anxiety-related behavioral adaptations in female mice. Here, we show that Arginine vasopressin receptor 1a ( Avpr1a )-expressing neurons in the central nucleus of the amygdala (CeA) mediate these sex-specific effects, in part, via projections to the caudate putamen. Loss of function studies demonstrate that AVPR1A signaling in the CeA is required for effects of CSIS on anxiety-related behaviors in females but has no effect in males or group housed females. This sex-specificity is mediated by AVP produced by a subpopulation of neurons in the posterodorsal medial nucleus of the amygdala that project to the CeA. Estrogen receptor alpha signaling in these neurons also contributes to preferential sensitivity of females to CSIS. These data support new therapeutic applications for AVPR1A antagonists in women.
Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection.

Nat Immunol.

2017 Sep 25

Fernandez E, Dejnirattisai W, Cao B, Scheaffer SM, Supasa P, Wongwiwat W, Esakky P, Drury A, Mongkolsapaya J, Moley KH, Mysorekar IU, Screaton GR, Diamond MS.
PMID: 28945244 | DOI: 10.1038/ni.3849

The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?