Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

Your search for "INS" returned results. Search for our Top genes LGR5, vglut2, gad67, brca1

    Refine Probe List

    Content for comparison

    Gene

    • TBD (1413) Apply TBD filter
    • Lgr5 (151) Apply Lgr5 filter
    • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
    • Gad1 (90) Apply Gad1 filter
    • vGlut2 (80) Apply vGlut2 filter
    • HPV E6/E7 (78) Apply HPV E6/E7 filter
    • Slc17a6 (77) Apply Slc17a6 filter
    • Axin2 (74) Apply Axin2 filter
    • SLC32A1 (74) Apply SLC32A1 filter
    • FOS (73) Apply FOS filter
    • Sst (65) Apply Sst filter
    • TH (63) Apply TH filter
    • VGAT (58) Apply VGAT filter
    • Gad2 (54) Apply Gad2 filter
    • tdTomato (54) Apply tdTomato filter
    • DRD2 (53) Apply DRD2 filter
    • Slc17a7 (52) Apply Slc17a7 filter
    • GLI1 (51) Apply GLI1 filter
    • PVALB (47) Apply PVALB filter
    • egfp (46) Apply egfp filter
    • ZIKV (46) Apply ZIKV filter
    • DRD1 (42) Apply DRD1 filter
    • GFAP (39) Apply GFAP filter
    • COL1A1 (38) Apply COL1A1 filter
    • Crh (37) Apply Crh filter
    • Chat (37) Apply Chat filter
    • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
    • Pomc (34) Apply Pomc filter
    • PDGFRA (33) Apply PDGFRA filter
    • Il-6 (33) Apply Il-6 filter
    • Cre (33) Apply Cre filter
    • AGRP (32) Apply AGRP filter
    • PECAM1 (32) Apply PECAM1 filter
    • Npy (32) Apply Npy filter
    • Wnt5a (31) Apply Wnt5a filter
    • CXCL10 (31) Apply CXCL10 filter
    • GLP1R (31) Apply GLP1R filter
    • Sox9 (29) Apply Sox9 filter
    • CD68 (28) Apply CD68 filter
    • Penk (28) Apply Penk filter
    • PD-L1 (28) Apply PD-L1 filter
    • (-) Remove ACTA2 filter ACTA2 (27)
    • SHH (27) Apply SHH filter
    • VGluT1 (27) Apply VGluT1 filter
    • OLFM4 (26) Apply OLFM4 filter
    • GFP (26) Apply GFP filter
    • Rbfox3 (25) Apply Rbfox3 filter
    • MALAT1 (24) Apply MALAT1 filter
    • SOX2 (24) Apply SOX2 filter
    • Ccl2 (24) Apply Ccl2 filter

    Product

    • RNAscope Multiplex Fluorescent Assay (9) Apply RNAscope Multiplex Fluorescent Assay filter
    • RNAscope Fluorescent Multiplex Assay (5) Apply RNAscope Fluorescent Multiplex Assay filter
    • RNAscope (3) Apply RNAscope filter
    • RNAscope 2.5 HD Brown Assay (3) Apply RNAscope 2.5 HD Brown Assay filter
    • RNAscope 2.5 HD Duplex (2) Apply RNAscope 2.5 HD Duplex filter
    • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
    • RNAscope 2.0 Assay (1) Apply RNAscope 2.0 Assay filter
    • RNAscope 2.5 LS Assay (1) Apply RNAscope 2.5 LS Assay filter

    Research area

    • Development (7) Apply Development filter
    • Cancer (5) Apply Cancer filter
    • Neuroscience (5) Apply Neuroscience filter
    • Other (5) Apply Other filter
    • Inflammation (4) Apply Inflammation filter
    • Stem Cells (2) Apply Stem Cells filter
    • Endrocrinology (1) Apply Endrocrinology filter
    • Heart Disease (1) Apply Heart Disease filter
    • human health (1) Apply human health filter
    • lncRNA (1) Apply lncRNA filter
    • LncRNAs (1) Apply LncRNAs filter
    • Lung (1) Apply Lung filter
    • Metabolism Kidney (1) Apply Metabolism Kidney filter
    • Other: Injury (1) Apply Other: Injury filter
    • Other: Kidney (1) Apply Other: Kidney filter
    • Other: Metabolism (1) Apply Other: Metabolism filter
    • Oxygen (1) Apply Oxygen filter
    • Scar Free Regeneration (1) Apply Scar Free Regeneration filter
    • Sensory Neuroscience (1) Apply Sensory Neuroscience filter
    • Smooth Muscles (1) Apply Smooth Muscles filter
    • Stem cell (1) Apply Stem cell filter
    • Transcriptomics (1) Apply Transcriptomics filter

    Category

    • Publications (32) Apply Publications filter
    Single-cell atlas of craniogenesis uncovers SOXC-dependent, highly proliferative, and myofibroblast-like osteodermal progenitors

    Cell reports

    2022 Jul 12

    Angelozzi, M;Pellegrino da Silva, R;Gonzalez, MV;Lefebvre, V;
    PMID: 35830813 | DOI: 10.1016/j.celrep.2022.111045

    The mammalian skull vault is essential to shape the head and protect the brain, but the cellular and molecular events underlying its development remain incompletely understood. Single-cell transcriptomic profiling from early to late mouse embryonic stages provides a detailed atlas of cranial lineages. It distinguishes various populations of progenitors and reveals a high expression of SOXC genes (encoding the SOX4, SOX11, and SOX12 transcription factors) early in development in actively proliferating and myofibroblast-like osteodermal progenitors. SOXC inactivation in these cells causes severe skull and skin underdevelopment due to the limited expansion of cell populations before and upon lineage commitment. SOXC genes enhance the expression of gene signatures conferring dynamic cellular and molecular properties, including actin cytoskeleton assembly, chromatin remodeling, and signaling pathway induction and responsiveness. These findings shed light onto craniogenic mechanisms and SOXC functions and suggest that similar mechanisms could decisively control many developmental, adult, pathological, and regenerative processes.
    Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance

    Nature communications

    2021 Sep 06

    Cui, M;Atmanli, A;Morales, MG;Tan, W;Chen, K;Xiao, X;Xu, L;Liu, N;Bassel-Duby, R;Olson, EN;
    PMID: 34489413 | DOI: 10.1038/s41467-021-25653-w

    Following injury, cells in regenerative tissues have the ability to regrow. The mechanisms whereby regenerating cells adapt to injury-induced stress conditions and activate the regenerative program remain to be defined. Here, using the mammalian neonatal heart regeneration model, we show that Nrf1, a stress-responsive transcription factor encoded by the Nuclear Factor Erythroid 2 Like 1 (Nfe2l1) gene, is activated in regenerating cardiomyocytes. Genetic deletion of Nrf1 prevented regenerating cardiomyocytes from activating a transcriptional program required for heart regeneration. Conversely, Nrf1 overexpression protected the adult mouse heart from ischemia/reperfusion (I/R) injury. Nrf1 also protected human induced pluripotent stem cell-derived cardiomyocytes from doxorubicin-induced cardiotoxicity and other cardiotoxins. The protective function of Nrf1 is mediated by a dual stress response mechanism involving activation of the proteasome and redox balance. Our findings reveal that the adaptive stress response mechanism mediated by Nrf1 is required for neonatal heart regeneration and confers cardioprotection in the adult heart.
    Defining mammary basal cell transcriptional states using single-cell RNA-sequencing

    Scientific reports

    2022 Mar 22

    Gutierrez, G;Sun, P;Han, Y;Dai, X;
    PMID: 35318370 | DOI: 10.1038/s41598-022-08870-1

    Breast cancer is a heterogenous disease that can be classified into multiple subtypes including the most aggressive basal-like and triple-negative subtypes. Understanding the heterogeneity within the normal mammary basal epithelial cells holds the key to inform us about basal-like cancer cell differentiation dynamics as well as potential cells of origin. Although it is known that the mammary basal compartment contains small pools of stem cells that fuel normal tissue morphogenesis and regeneration, a comprehensive yet focused analysis of the transcriptional makeup of the basal cells is lacking. We used single-cell RNA-sequencing and multiplexed RNA in-situ hybridization to characterize mammary basal cell heterogeneity. We used bioinformatic and computational pipelines to characterize the molecular features as well as predict differentiation dynamics and cell-cell communications of the newly identified basal cell states. We used genetic cell labeling to map the in vivo fates of cells in one of these states. We identified four major distinct transcriptional states within the mammary basal cells that exhibit gene expression signatures suggestive of different functional activity and metabolic preference. Our in vivo labeling and ex vivo organoid culture data suggest that one of these states, marked by Egr2 expression, represents a dynamic transcriptional state that all basal cells transit through during pubertal mammary morphogenesis. Our study provides a systematic approach to understanding the molecular heterogeneity of mammary basal cells and identifies previously unknown dynamics of basal cell transcriptional states.
    Single-cell reconstruction of the early maternal–fetal interface in humans

    Nature.

    2018 Nov 14

    Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, Stephenson E, Polański K, Goncalves A, Gardner L, Holmqvist S, Henriksson J, Zou A, Sharkey AM, Millar B, Innes B, Wood L, Wilbrey-Clark A, Payne RP, Ivarsson MA, Lisgo S, Filby A, Rowitch DH, Bulmer JN, Wright GJ, Stubbington MJT, Haniffa M, Moffett A, Teichmann SA.
    PMID: 30429548 | DOI: 10.1038/s41586-018-0698-6

    During early human pregnancy the uterine mucosa transforms into the decidua, into which the fetal placenta implants and where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblast-decidual interactions underlie common diseases of pregnancy, including pre-eclampsia and stillbirth. Here we profile the transcriptomes of about 70,000 single cells from first-trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals subsets of perivascular and stromal cells that are located in distinct decidual layers. There are three major subsets of decidual natural killer cells that have distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. Our data identify many regulatory interactions that prevent harmful innate or adaptive immune responses in this environment. Our single-cell atlas of the maternal-fetal interface reveals the cellular organization of the decidua and placenta, and the interactions that are critical for placentation and reproductive success.

    Contribution of ATOH1+ Cells to the Homeostasis, Repair, and Tumorigenesis of the Colonic Epithelium

    Stem Cell Reports

    2017 Dec 07

    Ishibashi F, Shimizu H, Nakata T, Fujii S, Suzuki K, Kawamoto A, Anzai S, Kuno R, Nagata S, Ito G, Murano T, Mizutani T, Oshima S, Tsuchiya K, Nakamura T, Watanabe M, Okamoto R.
    PMID: 29233556 | DOI: 10.1016/j.stemcr.2017.11.006

    ATOH1 is a master transcription factor for the secretory lineage differentiation of intestinal epithelial cells (IECs). However, the comprehensive contribution of ATOH1+ secretory lineage IECs to the homeostasis, repair, and tumorigenesis of the intestinal epithelium remains uncertain. Through our ATOH1+ cell-lineage tracing, we show here that a definite number of ATOH1+ IECs retain stem cell properties and can form ATOH1+IEC-derived clonal ribbons (ATOH1+ICRs) under completely homeostatic conditions. Interestingly, colonic ATOH1+IECs appeared to exhibit their stem cell function more frequently compared with those of the small intestine. Consistently, the formation of ATOH1+ICRs was significantly enhanced upon dextran sodium sulfate colitis-induced mucosal damage. In addition, colonic ATOH1+ IECs acquired tumor stem cell-like properties in the azoxymethane-DSS tumor model. Our results reveal an unexpected contribution of colonic ATOH1+ IECs to maintaining the stem cell population under both homeostatic and pathologic conditions and further illustrate the high plasticity of the crypt-intrinsic stem cell hierarchy.

    Amino acid transporter SLC7A5 regulates Paneth cell function to affect the intestinal inflammatory response

    bioRxiv : the preprint server for biology

    2023 Jan 24

    Bao, L;Fu, L;Su, Y;Chen, Z;Peng, Z;Sun, L;Gonzalez, FJ;Wu, C;Zhang, H;Shi, B;Shi, YB;
    PMID: 36789439 | DOI: 10.1101/2023.01.24.524966

    The intestine is critical for not only processing and resorbing nutrients but also protecting the organism from the environment. These functions are mainly carried out by the epithelium, which is constantly being self-renewed. Many genes and pathways can influence intestinal epithelial cell proliferation. Among them is mTORC1, whose activation increases cell proliferation. Here, we report the first intestinal epithelial cell-specific knockout ( ΔIEC ) of an amino acid transporter capable of activating mTORC1. We show that the transporter, SLC7A5, is highly expressed in mouse intestinal crypt and Slc7a5 ΔIEC reduces mTORC1 signaling. Surprisingly, Slc7a5 ΔIEC mice have increased cell proliferation but reduced secretory cells, particularly mature Paneth cells. scRNA-seq and electron microscopic analyses revealed dedifferentiation of Paneth cells in Slc7a5 ΔIEC mice, leading to markedly reduced secretory granules with little effect on Paneth cell number. We further show that Slc7a5 ΔIEC mice are prone to experimental colitis. Thus, SLC7A5 regulates secretory cell differentiation to affect stem cell niche and/or inflammatory response to regulate cell proliferation.
    Spatial and cell type transcriptional landscape of human cerebellar development

    Nature neuroscience

    2021 Jun 17

    Aldinger, KA;Thomson, Z;Phelps, IG;Haldipur, P;Deng, M;Timms, AE;Hirano, M;Santpere, G;Roco, C;Rosenberg, AB;Lorente-Galdos, B;Gulden, FO;O'Day, D;Overman, LM;Lisgo, SN;Alexandre, P;Sestan, N;Doherty, D;Dobyns, WB;Seelig, G;Glass, IA;Millen, KJ;
    PMID: 34140698 | DOI: 10.1038/s41593-021-00872-y

    The human neonatal cerebellum is one-fourth of its adult size yet contains the blueprint required to integrate environmental cues with developing motor, cognitive and emotional skills into adulthood. Although mature cerebellar neuroanatomy is well studied, understanding of its developmental origins is limited. In this study, we systematically mapped the molecular, cellular and spatial composition of human fetal cerebellum by combining laser capture microscopy and SPLiT-seq single-nucleus transcriptomics. We profiled functionally distinct regions and gene expression dynamics within cell types and across development. The resulting cell atlas demonstrates that the molecular organization of the cerebellar anlage recapitulates cytoarchitecturally distinct regions and developmentally transient cell types that are distinct from the mouse cerebellum. By mapping genes dominant for pediatric and adult neurological disorders onto our dataset, we identify relevant cell types underlying disease mechanisms. These data provide a resource for probing the cellular basis of human cerebellar development and disease.
    Lifelong single-cell profiling of cranial neural crest diversification in zebrafish

    Nature communications

    2022 Jan 10

    Fabian, P;Tseng, KC;Thiruppathy, M;Arata, C;Chen, HJ;Smeeton, J;Nelson, N;Crump, JG;
    PMID: 35013168 | DOI: 10.1038/s41467-021-27594-w

    The cranial neural crest generates a huge diversity of derivatives, including the bulk of connective and skeletal tissues of the vertebrate head. How neural crest cells acquire such extraordinary lineage potential remains unresolved. By integrating single-cell transcriptome and chromatin accessibility profiles of cranial neural crest-derived cells across the zebrafish lifetime, we observe progressive and region-specific establishment of enhancer accessibility for distinct fates. Neural crest-derived cells rapidly diversify into specialized progenitors, including multipotent skeletal progenitors, stromal cells with a regenerative signature, fibroblasts with a unique metabolic signature linked to skeletal integrity, and gill-specific progenitors generating cell types for respiration. By retrogradely mapping the emergence of lineage-specific chromatin accessibility, we identify a wealth of candidate lineage-priming factors, including a Gata3 regulatory circuit for respiratory cell fates. Rather than multilineage potential being established during cranial neural crest specification, our findings support progressive and region-specific chromatin remodeling underlying acquisition of diverse potential.

    Pages

    • « first
    • ‹ previous
    • 1
    • 2
    • 3
    X
    Description
    sense
    Example: Hs-LAG3-sense
    Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
    Intron#
    Example: Mm-Htt-intron2
    Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
    Pool/Pan
    Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
    A mixture of multiple probe sets targeting multiple genes or transcripts
    No-XSp
    Example: Hs-PDGFB-No-XMm
    Does not cross detect with the species (Sp)
    XSp
    Example: Rn-Pde9a-XMm
    designed to cross detect with the species (Sp)
    O#
    Example: Mm-Islr-O1
    Alternative design targeting different regions of the same transcript or isoforms
    CDS
    Example: Hs-SLC31A-CDS
    Probe targets the protein-coding sequence only
    EnEmProbe targets exons n and m
    En-EmProbe targets region from exon n to exon m
    Retired Nomenclature
    tvn
    Example: Hs-LEPR-tv1
    Designed to target transcript variant n
    ORF
    Example: Hs-ACVRL1-ORF
    Probe targets open reading frame
    UTR
    Example: Hs-HTT-UTR-C3
    Probe targets the untranslated region (non-protein-coding region) only
    5UTR
    Example: Hs-GNRHR-5UTR
    Probe targets the 5' untranslated region only
    3UTR
    Example: Rn-Npy1r-3UTR
    Probe targets the 3' untranslated region only
    Pan
    Example: Pool
    A mixture of multiple probe sets targeting multiple genes or transcripts

    Enabling research, drug development (CDx) and diagnostics

    Contact Us
    • Toll-free in the US and Canada
    • +1877 576-3636
    • 
    • 
    • 
    Company
    • Overview
    • Leadership
    • Careers
    • Distributors
    • Quality
    • News & Events
    • Webinars
    • Patents
    Products
    • RNAscope or BaseScope
    • Target Probes
    • Controls
    • Manual assays
    • Automated Assays
    • Accessories
    • Software
    • How to Order
    Research
    • Popular Applications
    • Cancer
    • Viral
    • Pathways
    • Neuroscience
    • Other Applications
    • RNA & Protein
    • Customer Innovations
    • Animal Models
    Technology
    • Overview
    • RNA Detection
    • Spotlight Interviews
    • Publications & Guides
    Assay Services
    • Our Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    • Your Benefits
    • How to Order
    Diagnostics
    • Diagnostics
    • Companion Diagnostics
    Support
    • Getting started
    • Contact Support
    • Troubleshooting Guide
    • FAQs
    • Manuals, SDS & Inserts
    • Downloads
    • Webinars
    • Training Videos

    Visit Bio-Techne and its other brands

    • bio-technie
    • protein
    • bio-spacific
    • rd
    • novus
    • tocris
    © 2025 Advanced Cell Diagnostics, Inc.
    • Terms and Conditions of Sale
    • Privacy Policy
    • Security
    • Email Preferences
    • 
    • 
    • 

    For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

     

    Contact Us / Request a Quote
    Download Manuals
    Request a PAS Project Consultation
    Order online at
    bio-techne.com
    OK
    X
    Contact Us

    Complete one of the three forms below and we will get back to you.

    For Quote Requests, please provide more details in the Contact Sales form below

    • Contact Sales
    • Contact Support
    • Contact Services
    • Offices

    Advanced Cell Diagnostics

    Our new headquarters office starting May 2016:

    7707 Gateway Blvd.  
    Newark, CA 94560
    Toll Free: 1 (877) 576-3636
    Phone: (510) 576-8800
    Fax: (510) 576-8798

     

    Bio-Techne

    19 Barton Lane  
    Abingdon Science Park
    Abingdon
    OX14 3NB
    United Kingdom
    Phone 2: +44 1235 529449
    Fax: +44 1235 533420

     

    Advanced Cell Diagnostics China

    20F, Tower 3,
    Raffles City Changning Office,
    1193 Changning Road, Shanghai 200051

    021-52293200
    info.cn@bio-techne.com
    Web: www.acdbio.com/cn

    For general information: Info.ACD@bio-techne.com
    For place an order: order.ACD@bio-techne.com
    For product support: support.ACD@bio-techne.com
    For career opportunities: hr.ACD@bio-techne.com

    See Distributors
    ×

    You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

    OK Cancel
    Need help?

    How can we help you?