Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (205)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • (-) Remove Lgr5 filter Lgr5 (151)
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • (-) Remove DRD2 filter DRD2 (53)
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • CXCL10 (31) Apply CXCL10 filter
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Fluorescent Multiplex Assay (36) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope Multiplex Fluorescent Assay (32) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (27) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (21) Apply RNAscope 2.0 Assay filter
  • RNAscope (14) Apply RNAscope filter
  • RNAscope 2.5 LS Assay (11) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Brown Assay (10) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.5 HD Duplex (3) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope Multiplex Fluorescent v2 (3) Apply RNAscope Multiplex Fluorescent v2 filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope Multiplex Fluorescent Assay v2 (1) Apply RNAscope Multiplex Fluorescent Assay v2 filter

Research area

  • Cancer (61) Apply Cancer filter
  • Stem Cells (59) Apply Stem Cells filter
  • Neuroscience (50) Apply Neuroscience filter
  • Development (23) Apply Development filter
  • Stem cell (16) Apply Stem cell filter
  • Other (12) Apply Other filter
  • Inflammation (8) Apply Inflammation filter
  • Behavior (4) Apply Behavior filter
  • Addiction (3) Apply Addiction filter
  • Developmental (3) Apply Developmental filter
  • behavioral (2) Apply behavioral filter
  • Cancer Stem Cells (2) Apply Cancer Stem Cells filter
  • Psychiatry (2) Apply Psychiatry filter
  • Sex Differences (2) Apply Sex Differences filter
  • Bioinformatics (1) Apply Bioinformatics filter
  • Cell Biology (1) Apply Cell Biology filter
  • Cocaine Reward (1) Apply Cocaine Reward filter
  • Colitis (1) Apply Colitis filter
  • Cross Species Evolution (1) Apply Cross Species Evolution filter
  • Decision Making (1) Apply Decision Making filter
  • Diet (1) Apply Diet filter
  • Drug Rewards (1) Apply Drug Rewards filter
  • Endocrinology (1) Apply Endocrinology filter
  • Evolution (1) Apply Evolution filter
  • Gastro (1) Apply Gastro filter
  • Grooming behavior dysfunction (1) Apply Grooming behavior dysfunction filter
  • Gut Microbiota (1) Apply Gut Microbiota filter
  • Human intestinal organoids (1) Apply Human intestinal organoids filter
  • Infectious Disease (1) Apply Infectious Disease filter
  • Inflammatory Bowel Disease (1) Apply Inflammatory Bowel Disease filter
  • Keratin (1) Apply Keratin filter
  • lncRNA (1) Apply lncRNA filter
  • Metabolic (1) Apply Metabolic filter
  • Metabolism (1) Apply Metabolism filter
  • OCD (1) Apply OCD filter
  • Opioid Addiction (1) Apply Opioid Addiction filter
  • Organoid (1) Apply Organoid filter
  • Organoids (1) Apply Organoids filter
  • Other: Hair Growth (1) Apply Other: Hair Growth filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Psychiatric Disorders (1) Apply Psychiatric Disorders filter
  • Radiation enteritis (1) Apply Radiation enteritis filter
  • Radiotherapy (1) Apply Radiotherapy filter
  • Regeneration (1) Apply Regeneration filter
  • Reward Processing (1) Apply Reward Processing filter
  • Signalling (1) Apply Signalling filter
  • Stress (1) Apply Stress filter
  • Transcriptomics (1) Apply Transcriptomics filter
  • Tumourigenesis (1) Apply Tumourigenesis filter

Category

  • Publications (205) Apply Publications filter
NHE8 deficiency promotes colitis-associated cancer in mice via expansion of Lgr5 expressing cells

Cellular and Molecular Gastroenterology and Hepatology

2018 Aug 24

Xu H, Li J, Chen H, Ghishan FK.
PMID: - | DOI: 10.1016/j.jcmgh.2018.08.005

Abstract

Background and Aims

Lgr5 overexpression has been detected in colorectal cancers (CRCs), including some cases of colitis-associated CRCs. In colitis-associated CRCs, chronic inflammation is a contributing factor in carcinogenesis. We recently reported that intestinal sodium/hydrogen exchanger isoform 8 (NHE8) plays an important role in intestinal mucosal protection and that loss of NHE8 expression results in ulcerative colitis (UC)-like condition. Therefore, we hypothesized that NHE8 may be involved in the development of intestinal tumors.

Methods

We assessed NHE8 expression in human CRCs by IHC and studied tumor burden in NHE8KO mice using an AOM/DSS colon cancer model. We also evaluated cell proliferation in HT29NHE8KO cells and assessed tumor growth in NSG mice xenografted with HT29NHE8KO cells. To verify if a relationship exists between Lgr5 and NHE8 expression, we analyzed Lgr5 expression in NHE8KO mice by PCR and in situ hybridization. Lgr5 expression and cell proliferation in the absence of NHE8 were confirmed in colonic organoid cultures. The expression of β-catenin and c-Myc were also analyzed to evaluate Wnt/β-catenin activation.

Results

NHE8 was undetectable in human CRC tissues. Whereas only 9% of NHE8WT mice exhibited tumorigenesis in the AOM/DSS colon cancer model, almost ten times more NHE8KO mice (89%) developed tumors. In the absence of NHE8, a higher colony formation unit was discovered in HT29NHE8KO cells. In NSG mice, larger tumors developed at the site where HT29NHE8KO cells were injected compared to HT29NHE8WT cells. Furthermore, NHE8 deficiency resulted in elevated Lgr5 expression in the colon, in HT29 derived tumors, and in colonoids. The absence of NHE8 also increased Wnt/β-catenin activation.

Conclusions

NHE8 might be an intrinsic factor that regulates Wnt/β-catenin in the intestine.

Expression of LGR5 in mammary myoepithelial cells and in triple-negative breast cancers

Scientific reports

2021 Sep 07

Lee, HJ;Myung, JK;Kim, HS;Lee, DH;Go, HS;Choi, JH;Koh, HM;Lee, SJ;Jang, B;
PMID: 34493772 | DOI: 10.1038/s41598-021-97351-y

Lineage tracing in mice indicates that LGR5 is an adult stem cell marker in multiple organs, such as the intestine, stomach, hair follicles, ovary, and mammary glands. Despite many studies exploring the presence of LGR5 cells in human tissues, little is known about its expression profile in either human mammary tissue or pathological lesions. In this study we aim to investigate LGR5 expression in normal, benign, and malignant lesions of the human breast using RNA in situ hybridization. LGR5 expression has not been observed in normal lactiferous ducts and terminal duct lobular units, whereas LGR5-positive cells have been specifically observed in the basal myoepithelium of ducts in the regenerative tissues, ductal carcinoma in situ, and in ducts surrounded by invasive cancer cells. These findings suggest LGR5 marks facultative stem cells that are involved in post injury regeneration instead of homeostatic stem cells. LGR5 positivity was found in 3% (9 of 278 cases) of invasive breast cancers (BC), and it showed positive associations with higher histologic grades (P = 0.001) and T stages (P < 0.001), while having negative correlations with estrogen receptor (P < 0.001) and progesterone receptor (P < 0.001) expression. Remarkably, all LGR5-positive BC, except one, belong to triple-negative BC (TNBC), representing 24% (9 of 38 cases) of all of them. LGR5 histoscores have no correlations with EGFR, CK5/6, Ki-67, or P53 expression. Additionally, no β-catenin nuclear localization was observed in LGR5-positive BC, indicating that canonical Wnt pathway activation is less likely involved in LGR5 expression in BC. Our results demonstrate that LGR5 expression is induced in regenerative conditions in the myoepithelium of human mammary ducts and that its expression is only observed in TNBC subtype among all invasive BC. Further studies regarding the functional and prognostic impact of LGR5 in TNBC are warranted.
Repeated cocaine administration upregulates CB2 receptor expression in striatal medium-spiny neurons that express dopamine D1 receptors in mice

Acta pharmacologica Sinica

2021 Jul 27

Zhang, HY;De Biase, L;Chandra, R;Shen, H;Liu, QR;Gardner, E;Lobo, MK;Xi, ZX;
PMID: 34316031 | DOI: 10.1038/s41401-021-00712-6

Cannabinoid CB2 receptors (CB2R) are importantly involved in drug reward and addiction. However, the cellular mechanisms underlying CB2R action remain unclear. We have previously reported that cocaine self-administration upregulates CB2R expression in midbrain dopamine (DA) neurons. In the present study, we investigated whether cocaine or heroin also alters CB2R expression in striatal medium-spiny neurons that express dopamine D1 or D2 receptors (D1-MSNs, D2-MSNs) and microglia. Due to the concern of CB2R antibody specificity, we developed three mouse CB2-specific probes to detect CB2R mRNA using quantitative RT-PCR and RNAscope in situ hybridization (ISH) assays. We found that a single injection of cocaine failed to alter, while repeated cocaine injections or self-administration dose-dependently upregulated CB2R gene expression in both brain (cortex and striatum) and periphery (spleen). In contrast, repeated administration of heroin produced a dose-dependent reduction in striatal CB2 mRNA expression. RNAscope ISH assays detected CB2R mRNA in striatal D1- and D2-MSNs, not in microglia. We then used transgenic CX3CR1eGFP/+ microglia reporter mice and D1- or D2-Cre-RiboTag mice to purify striatal microglia or ribosome-associated mRNAs from CX3CR1eGFP/+, D1-MSNs, or D2-MSNs, respectively. We found that CB2R upregulation occurred mainly in D1-MSNs, not in D2-MSNs or microglia, in the nucleus accumbens rather than the dorsal striatum. These findings indicate that repeated cocaine exposure may upregulate CB2R expression in both brain and spleen, with regional and cell type-specific profiles. In the striatum, CB2R upregulation occurs mainly in D1-MSNs in the nucleus accumbens. Given the important role of D1-MSNs in brain reward function, the present findings provide new insight into mechanisms by which brain CB2Rs modulate cocaine action.
Distribution of Lgr5-positive cancer cells in intramucosal gastric signet-ring cell carcinoma.

Pathol Int.

2016 Sep 01

Nakajima T, Uehara T, Maruyama Y, Iwaya M, Kobayashi Y, Ota H.
PMID: 27593551 | DOI: 10.1111/pin.12451

Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is a putative intestinal stem cell marker that is also expressed in various tumors. To analyze its pathological characteristics in mucosal gastric signet-ring cell carcinoma (SRCC), we investigated Lgr5 expression in 35 intramucosal gastric SRCC patients using RNAscope, a newly developed RNA in situ hybridization technique. Lgr5 expression in individual tumor cells was scored semi-quantitatively from 0 to 400. Ki67 was also examined by immunohistochemistry, with a linear arrangement of Ki67-expressing cells present in 20 of 35 cases. This area of Ki67-expressing cells was topographically divided into upper, middle, and lower regions. All cases with linear Ki67 expression patterns also had Lgr5-positive cells arranged in a linear fashion in the lower area-which was distinct from the area of high Ki67 expression. The rate of Ki67 positivity in Lgr5-positive cells was significantly lower than that of Lgr5-negative cells in areas of high Ki67 expression. In intramucosal SRCC, the low mitotic activity of Lgr5-positive cells suggests that they may represent cancer stem cells as seen in other types of stomach carcinomas. Intramucosal SRCC may therefore contain stem cells expressing Lgr5 in the lower area of the lamina propria, akin to normal gastric pyloric mucosa.

Role of Dopamine D2 Receptor in Stress-Induced Myelin Loss.

Sci Rep. 2017

2017 Sep 14

Choi MH, Na JE, Yoon YR, Lee HJ, Yoon S, Rhyu IJ, Baik JH.
PMID: 28912499 | DOI: 10.1038/s41598-017-10173-9

Dopaminergic systems play a major role in reward-related behavior and dysregulation of dopamine (DA) systems can cause several mental disorders, including depression. We previously reported that dopamine D2 receptor knockout (D2R-/-) mice display increased anxiety and depression-like behaviors upon chronic stress. Here, we observed that chronic stress caused myelin loss in wild-type (WT) mice, while the myelin level in D2R-/- mice, which was already lower than that in WT mice, was not affected upon stress. Fewer mature oligodendrocytes (OLs) were observed in the corpus callosum of stressed WT mice, while in D2R-/- mice, both the control and stressed group displayed a decrease in the number of mature OLs. We observed a decrease in the number of active β-catenin (ABC)-expressing and TCF4-expressing cells among OL lineage cells in the corpus callosum of stressed WT mice, while such regulation was not found in D2R-/- mice. Administration of lithium normalized the behavioral impairments and myelin damage induced by chronic stress in WT mice, and restored the number of ABC-positive and TCF4-positive OLs, while such effect was not found in D2R-/- mice. Together, our findings indicate that chronic stress induces myelin loss through the Wnt/β-catenin signaling pathway in association with DA signaling through D2R.

LGR5 expression and clinicopathological features of the invasive front in the fat infiltration area of pancreatic cancer

Diagnostic pathology

2022 Feb 05

Kamakura, M;Uehara, T;Iwaya, M;Asaka, S;Kobayashi, S;Nakajima, T;Kinugawa, Y;Nagaya, T;Yoshizawa, T;Shimizu, A;Ota, H;Umemura, T;
PMID: 35123536 | DOI: 10.1186/s13000-022-01203-w

Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a strong cancer stem cell marker in colorectal cancer; however, there are many unclear aspects of LGR5 expression in pancreatic cancer. It has been reported that the interaction between tumor cells and stroma at the fat infiltration site has a significant effect on pancreatic cancer prognosis. Therefore, we report a clinicopathological study of LGR5 expression at the fat invasion front in pancreatic cancer.LGR5 expression was analyzed in 40 pancreatic ductal adenocarcinoma cases with RNAscope, which is a newly developed high-sensitivity in situ hybridization method. Epithelial-mesenchymal transition (EMT) was analyzed by the expression of E-cadherin and vimentin via immunohistochemistry.LGR5-positive dots were identified in all cases, especially with glandular formation. In the fat invasion front, a high histological grade showed significantly reduced LGR5 expression compared with a low histological grade (p=0.0126). LGR5 expression was significantly higher in the non-EMT phenotype group than in EMT phenotype group (p=0.0003). Additionally, LGR5 expression was significantly lower in cases with high vascular invasion than in those with low vascular invasion (p=0.0244).These findings suggest that decreased LGR5 expression in the fat invasion front is associated with more aggressive biological behavior in pancreatic ductal adenocarcinoma, with higher tumor grade, EMT phenotype, and higher vascular invasion.
LGR5-Expressing Cells in the Healing Process of Post-ESD Ulcers in Gastric Corpus

Digestive diseases and sciences

2021 Jun 03

Tobe, Y;Uehara, T;Nakajima, T;Iwaya, M;Kobayashi, Y;Kinugawa, Y;Kuraishi, Y;Ota, H;
PMID: 34081250 | DOI: 10.1007/s10620-021-07059-2

LGR5 is a promising stem cell marker in gastric pylorus, but there are few reports on its expression in human gastric corpus.To investigate the involvement of LGR5 expression in gastric corpus ulcer regeneration in humans.LGR5 expression was analyzed in five post-ESD ulcers during the healing process of regenerating epithelial cells of the gastric corpus. LGR5 expression was detected by mRNA in situ hybridization using an RNA scope kit. Immunohistochemistry of MUC6, HIK1083, and pepsinogen 1 (PG1) was performed to identify cell differentiation.We defined MUC6+/HIK1083-/PG1-, MUC6+/HIK1083+/PG1-, MUC6+/HIK1083+/PG1+, MUC6+/HIK1083-/PG1+, and MUC6-/HIK1083-/PG1+cells as pseudopyloric mucosa (PPM) phase 1 (PPM1), PPM phase 2 (PPM2), PPM phase 3 (PPM3), immature chief cells (ICC), and mature chief cells (MCC) in order from the ulcer center, respectively. In the regenerated mucosa around post-ESD ulcers, LGR5 expression was observed throughout the gland in PPM1-PPM3, but it was limited to the bottom of the gland in ICC and MCC. Furthermore, LGR5 expression was not identified in the normal gastric corpus. The H-score of PPM2 was significantly higher than that of PPM3 (P = 0.0313). The H-score of PPM3 was significantly higher than that of ICC (P = 0.0313). The LGR5 H-score was higher at the immature stage, which decreased gradually with progression of the differentiation stage.LGR5 expression appears to contribute to mucosal regeneration in the human gastric corpus. The application of LGR5 expression analysis to mucosal regeneration and fundic gland-type gastric tumors is expected.
BCL-3 loss sensitises colorectal cancer cells to DNA damage by targeting homologous recombination

DNA repair

2022 Apr 16

Parker, C;Chambers, AC;Flanagan, DJ;Ho, JWY;Collard, TJ;Ngo, G;Baird, DM;Timms, P;Morgan, RG;Sansom, OJ;Williams, AC;
PMID: 35468497 | DOI: 10.1016/j.dnarep.2022.103331

The proto-oncogene BCL-3 is upregulated in a subset of colorectal cancers (CRC), where it has been shown to enhance tumour cell survival. However, although increased expression correlates with poor patient prognosis, the role of BCL-3 in determining therapeutic response remains largely unknown. In this study, we use combined approaches in multiple cell lines and pre-clinical mouse models to investigate the function of BCL-3 in the DNA damage response. We show that suppression of BCL-3 increases γH2AX foci formation and decreases homologous recombination in CRC cells, resulting in reduced RAD51 foci number and increased sensitivity to PARP inhibition. Importantly, a similar phenotype is seen in Bcl3-/- mice, where Bcl3-/- mouse crypts also exhibit sensitivity to DNA damage with increased γH2AX foci compared to wild type mice. Additionally, Apc.Kras-mutant x Bcl3-/- mice are more sensitive to cisplatin chemotherapy compared to wild type mice. Taken together, our results identify BCL-3 as a regulator of the cellular response to DNA damage and suggests that elevated BCL-3 expression, as observed in CRC, could increase resistance of tumour cells to DNA damaging agents including radiotherapy. These findings offer a rationale for targeting BCL-3 in CRC as an adjunct to conventional therapies and suggest that BCL-3 expression in tumours could be a useful biomarker in stratification of rectal cancer patients for neo-adjuvant chemoradiotherapy.
Distinct expression profile of stem cell markers, LGR5 and LGR6, in basaloid skin tumors

Virchows Arch.

2017 Jan 09

Jang BG, Lee C, Kim HS, Shin MS, Cheon MS, Kim JW, Kim WH.
PMID: 28070642 | DOI: 10.1007/s00428-016-2061-3

Mammalian epidermis, which is composed of hair follicles, sebaceous glands, and interfollicular epidermis, is maintained by discrete stem cells. In vivo lineage tracing demonstrated that murine LGR5 cells are mainly responsible for hair follicle regeneration whereas LGR6 cells generate sebaceous glands and interfollicular epidermis. However, little is known about their expression in the human skin tumors. In this study, we investigated the expression profile of LGR5 and LGR6 in a variety of human skin tumors including basaloid tumors with follicular differentiation (94 basal cell carcinomas, 18 trichoepitheliomas, 3 basaloid follicular hamartomas, and 12 pilomatricomas) and tumors with ductal differentiation (7 eccrine poromas, 8 hidradenomas, and 5 spiradenomas). LGR5 expression was highest in basal cell carcinomas (BCCs) followed by trichoepitheliomas (TEs) and basaloid follicular hamartomas. LGR6 had the same expression pattern as LGR5, even though its expression was lower. Interestingly, LGR6 expression was detected in stromal cells around the tumor and papillary mesenchymal bodies of TEs but not in stromal cells of BCCs, suggesting different characteristics of tumor-associated fibroblasts between TEs and BCCs. It was unexpected to find that pilomatricomas exclusively expressed LGR6, and its expression was limited to the basaloid cells. Notably, LGR6-positive cells were observed in sweat gland ductal cells in normal skin. This might explain, in part, the finding that LGR6 expression was relatively higher in basaloid tumors with ductal differentiation than in those with follicular differentiation. In particular, spiradenomas displayed the same distribution pattern of LGR6 as normal sweat glands, suggesting the possibility of LGR6-positive cells as tumor stem cells. In conclusion, we documented the different expression patterns of stem cell markers, LGR5 and LGR6 in various skin tumors. These data may provide important insights to understand the origin and development of basaloid skin tumors.

Elevated prefrontal dopamine interferes with the stress-buffering properties of behavioral control in female rats

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology

2022 Sep 08

McNulty, CJ;Fallon, IP;Amat, J;Sanchez, RJ;Leslie, NR;Root, DH;Maier, SF;Baratta, MV;
PMID: 36076018 | DOI: 10.1038/s41386-022-01443-w

Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.
Protein arginine methyltransferase 1 regulates cell proliferation and differentiation in adult mouse adult intestine

Cell & bioscience

2021 Jun 22

Xue, L;Bao, L;Roediger, J;Su, Y;Shi, B;Shi, YB;
PMID: 34158114 | DOI: 10.1186/s13578-021-00627-z

Adult stem cells play an essential role in adult organ physiology and tissue repair and regeneration. While much has been learnt about the property and function of various adult stem cells, the mechanisms of their development remain poorly understood in mammals. Earlier studies suggest that the formation of adult mouse intestinal stem cells takes place during the first few weeks after birth, the postembryonic period when plasma thyroid hormone (T3) levels are high. Furthermore, deficiency in T3 signaling leads to defects in adult mouse intestine, including reduced cell proliferation in the intestinal crypts, where stem cells reside. Our earlier studies have shown that protein arginine methyltransferase 1 (PRMT1), a T3 receptor coactivator, is highly expressed during intestinal maturation in mouse.We have analyzed the expression of PRMT1 by immunohistochemistry and studied the effect of tissue-specific knockout of PRMT1 in the intestinal epithelium.We show that PRMT1 is expressed highly in the proliferating transit amplifying cells and crypt base stem cells. By using a conditional knockout mouse line, we have demonstrated that the expression of PRMT1 in the intestinal epithelium is critical for the development of the adult mouse intestine. Specific removal of PRMT1 in the intestinal epithelium results in, surprisingly, more elongated adult intestinal crypts with increased cell proliferation. In addition, epithelial cell migration along the crypt-villus axis and cell death on the villus are also increased. Furthermore, there are increased Goblet cells and reduced Paneth cells in the crypt while the number of crypt base stem cells remains unchanged.Our finding that PRMT1 knockout increases cell proliferation is surprising considering the role of PRMT1 in T3-signaling and the importance of T3 for intestinal development, and suggests that PRMT1 likely regulates pathways in addition to T3-signaling to affect intestinal development and/or homeostasis, thus affecting cell proliferating and epithelial turn over in the adult.
Expression Profile of LGR5 and Its Prognostic Significance in Colorectal Cancer Progression.

Am J Pathol.

2018 Jul 20

Jang BG, Kim HS, Chang WY, Bae JM, Kim WH, Kang GH.
PMID: 30036518 | DOI: 10.1016/j.ajpath.2018.06.012

We investigated the expression profile of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) during colorectal cancer (CRC) progression and determined the prognostic impact of LGR5 in a large cohort of CRC samples. LGR5 expression was higher in CRCs than in normal mucosa, and was not associated with other cancer stem cell markers. LGR5 positivity was observed in 68% of 788 CRCs and was positively correlated with old age, well-to-moderate differentiation, and nuclear β-catenin expression. Enhanced LGR5 expression remained persistent during the adenoma-carcinoma transition, but markedly declined in the budding cancer cells at the invasive fronts, which was not due to altered Wnt or epithelial to mesenchymal transition signaling. LGR5 showed negative correlations with microsatellite instability and CpG island methylator phenotype, and was not associated with KRAS and BRAF mutations. Notably, LGR5 positivity was an independent prognostic marker for better clinical outcomes in CRC patients. LGR5 overexpression attenuated tumor growth by decreasing ERK phosphorylation along with decreased colony formation and migration abilities in DLD1 cells. Likewise, knockdown of LGR5 expression resulted in a decline in the colony- forming and migration capacities in LoVo cells. Taken together, our data suggest the suppressive role of LGR5 in CRC progression.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?