ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
Nephron.
2018 Sep 11
Ougaard ME, Sembach FE, Kvist PH, Tonnesen M, Frederiksen KS, Egfjord M, Jensen HE, Galsgaard ED.
PMID: 30205387 | DOI: 10.1159/000492294
Abstract
BACKGROUND/AIMS:
Murine nephrotoxic nephritis (NTN) is a well-established model resembling chronic kidney disease. Investigating gene expression patterns separately in the glomerular and cortical tubulointerstitial structure could provide new knowledge about structure-specific changes in expression of genes in the NTN model.
METHODS:
Glomerular, cortical tubulointerstitial and whole kidney tissues from mice subjected to nephrotoxic serum (NTS) or phosphate buffered saline (PBS) were collected on day 7, 21 and 42 using laser microdissection (LMD). Total RNA was extracted and subjected to nCounter NanoString. Histology, immunohistochemistry, in situ hybridization and/or quantitative real time PCR (qRT PCR) were performed to confirm regulation of selected genes.
RESULTS:
LMD provided detailed information about genes that were regulated differently between structures over time. Some of the fibrotic and inflammatory genes (Col1a1, Col3a1 and Ccl2) were upregulated in both structures, whereas other genes such as Spp1 and Grem1 were differentially regulated suggesting spatial pathogenic mechanisms in the kidney. Downregulation of cortical tubulointerstitium genes involved in iron metabolism was detected along with iron accumulation.
CONCLUSION:
This study demonstrates several regulated genes in pathways important for the pathogenesis of the NTN model and that LMD identifies structure-specific changes in gene expression during disease development. Furthermore, this study shows the benefits of isolating glomeruli and cortical tubulointerstitium in order to identify gene regulation.
Am J Pathol.
2017 Feb 03
Wakeland AK, Soncin F, Moretto-Zita M, Chang CW, Horii M, Pizzo D, Nelson KK, Laurent LC, Parast MM.
PMID: 28167044 | DOI: 10.1016/j.ajpath.2016.11.018
Villous cytotrophoblasts are epithelial stem cells of the early human placenta, able to differentiate either into syncytiotrophoblasts in floating chorionic villi or extravillous trophoblasts (EVTs) at the anchoring villi. The signaling pathways regulating differentiation into these two lineages are incompletely understood. The bulk of placental growth and development in the first trimester occurs under low oxygen tension. One major mechanism by which oxygen regulates cellular function is through the hypoxia-inducible factor (HIF), a transcription factor complex stabilized under low oxygen tension to mediate cellular responses, including cell fate decisions. HIF is known to play a role in trophoblast differentiation in rodents; however, its role in human trophoblast differentiation is poorly understood. Using RNA profiling of sorted populations of primary first-trimester trophoblasts, we evaluated the first stage of EVT differentiation, the transition from epidermal growth factor receptor+ villous cytotrophoblasts into human leukocyte antigen-G+ proximal column EVT (pcEVT) and identified hypoxia as a major pcEVT-associated pathway. Using primary cytotrophoblasts, we determined that culture in low oxygen directs differentiation preferentially toward human leukocyte antigen-G+ pcEVT, and that an intact HIF complex is required for this process. Finally, using global RNA profiling, we identified integrin-linked kinase and associated cytoskeletal remodeling and adhesion to be among HIF-dependent pcEVT-associated signaling pathways. Taken together, we propose that oxygen regulates EVT differentiation through HIF-dependent modulation of various cell adhesion and morphology-related pathways.
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com