Handbook of Genetic Diagnostic Technologies in Reproductive Medicine
Lorenzi, V;Vento-Tormo, R;
| DOI: 10.1201/9781003024941-2
The Human Cell Atlas (HCA) is an international consortium established at the end of 2016 with the mission of mapping and characterizing all cells in the human body in terms of their distinctive patterns of gene expression, physiological states, and location (Rozenblatt-Rosen et al., 2017); (Regev et al., 2017) (http://www.humancellatlas.org" xmlns:xlink="http://www.w3.org/1999/xlink">www.humancellatlas.org). It is an open and collaborative initiative, bringing together experts across multiple disciplines, and is meant to progress in phases. Recently, the first maps focused on specific organs and tissues (Ordovas-Montanes et al., 2018; Vento-Tormo et al., 2018; Popescu et al., 2019; Ramachandran et al., 2019; Smillie et al., 2019; Stewart et al., 2019; Vieira Braga et al., 2019) have laid the foundations for further work aimed at completing the atlas to include at least ten billion cells that fully represent the world's diversity.
Emanuel, K;Runner, K;Brodnik, Z;Morsey, B;Lamberty, B;Johnson, H;Acharya, A;Byrareddy, S;Espana, R;Fox, H;Gaskill, P;
| DOI: 10.2139/ssrn.3961038
In the era of antiretroviral therapy, inflammation is currently a central factor in a growing number of HIV-associated comorbidities, such as cardiovascular disease, cognitive impairment, and neuropsychiatric disorders. This highlights the value of developing therapeutics that both reduce HIV-associated inflammation and treat associated co-morbidities. Previous research on monoamine oxidase inhibitors (MAOIs) suggests that this class of drugs has anti-inflammatory properties in addition to neuropsychiatric effects. Therefore, we examined the impact of the deprenyl, an MAOI, on SIV-associated inflammation during acute SIV infection using the rhesus macaque model of HIV infection. Our results show that deprenyl decreased both peripheral and CNS inflammation but had no effect on viral load in either the periphery or CNS. These data show that the MAOI deprenyl has broad anti-inflammatory effects when given during the acute stage of SIV infection, suggesting that repurposing this drug could provide a beneficial adjuvant for antiretroviral therapy.
Pimpinella, S;Sauve, I;Dietrich, S;Zampieri, N;
PMID: 35306143 | DOI: 10.1016/j.neuroscience.2022.03.011
Somatosensory neurons detect vital information about the environment and internal status of the body, such as temperature, touch, itch, and proprioception. The circuit mechanisms controlling the coding of somatosensory information and the generation of appropriate behavioral responses are not clear yet. In order to address this issue, it is important to define the precise connectivity patterns between primary sensory afferents dedicated to the detection of different stimuli and recipient neurons in the central nervous system. In this study we describe and validate a rabies tracing approach for mapping mouse spinal circuits receiving sensory input from distinct, genetically defined, modalities. We analyzed the anatomical organization of spinal circuits involved in coding of thermal and mechanical stimuli and showed that somatosensory information from distinct modalities is relayed to partially overlapping ensembles of interneurons displaying stereotyped laminar organization, thus highlighting the importance of positional features and population coding for the processing and integration of somatosensory information.
Ichiki, T;Wang, T;Kennedy, A;Pool, AH;Ebisu, H;Anderson, DJ;Oka, Y;
PMID: 35082448 | DOI: 10.1038/s41586-021-04359-5
Ingested food and water stimulate sensory systems in the oropharyngeal and gastrointestinal areas before absorption1,2. These sensory signals modulate brain appetite circuits in a feed-forward manner3-5. Emerging evidence suggests that osmolality sensing in the gut rapidly inhibits thirst neurons upon water intake. Nevertheless, it remains unclear how peripheral sensory neurons detect visceral osmolality changes, and how they modulate thirst. Here we use optical and electrical recording combined with genetic approaches to visualize osmolality responses from sensory ganglion neurons. Gut hypotonic stimuli activate a dedicated vagal population distinct from mechanical-, hypertonic- or nutrient-sensitive neurons. We demonstrate that hypotonic responses are mediated by vagal afferents innervating the hepatic portal area (HPA), through which most water and nutrients are absorbed. Eliminating sensory inputs from this area selectively abolished hypotonic but not mechanical responses in vagal neurons. Recording from forebrain thirst neurons and behavioural analyses show that HPA-derived osmolality signals are required for feed-forward thirst satiation and drinking termination. Notably, HPA-innervating vagal afferents do not sense osmolality itself. Instead, these responses are mediated partly by vasoactive intestinal peptide secreted after water ingestion. Together, our results reveal visceral hypoosmolality as an important vagal sensory modality, and that intestinal osmolality change is translated into hormonal signals to regulate thirst circuit activity through the HPA pathway.
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
Rux, D;Helbig, K;Han, B;Cortese, C;Koyama, E;Han, L;Pacifici, M;
PMID: 35060644 | DOI: 10.1002/jbmr.4506
Articular cartilage (AC) is essential for body movement but is highly susceptible to degenerative diseases and has poor self-repair capacity. To improve current subpar regenerative treatments, developmental mechanisms of AC should be clarified and, specifically, how its postnatal multi-zone organization is acquired. Primary cilia are cell surface organelles crucial for mammalian tissue morphogenesis. While their importance for chondrocyte functioning is appreciated, their specific roles in postnatal AC morphogenesis remain unclear. To explore these mechanisms, we used a murine conditional loss-of-function approach (Ift88-flox) targeting joint-lineage progenitors (Gdf5Cre) and monitored postnatal knee AC development. Joint formation and growth up to juvenile stages were largely unaffected. However, mature AC (aged 2 months) exhibited disorganized extracellular matrix, decreased aggrecan and collagen II due to reduced gene expression (not increased catabolism), and marked reduction of AC modulus by 30-50%. In addition, and unexpectedly, we discovered that tidemark patterning was severely disrupted, as was hedgehog signaling, and exhibited specificity based on regional load-bearing functions of AC. Interestingly, Prg4 expression was markedly increased in highly loaded sites in mutants. Together, our data provide evidence that primary cilia orchestrate postnatal AC morphogenesis including tidemark topography, zonal matrix composition and ambulation load responses. This article is protected by
International journal of molecular sciences
Troadec, JD;Gaigé, S;Barbot, M;Lebrun, B;Barbouche, R;Abysique, A;
PMID: 35055143 | DOI: 10.3390/ijms23020960
The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.
American journal of physiology. Lung cellular and molecular physiology
Su, Y;Barr, J;Jaquish, A;Xu, J;Verheyden, JM;Sun, X;
PMID: 34755535 | DOI: 10.1152/ajplung.00376.2021
Known as the gas exchange organ, the lung is also critical for responding to the aerosol environment in part through interaction with the nervous system. The diversity and specificity of lung innervating neurons remains poorly understood. Here, we interrogated the cell body location, molecular signature and projection pattern of lung innervating sensory neurons. Retrograde tracing from the lung coupled with whole tissue clearing highlighted neurons primarily in the vagal ganglia. Centrally, they project specifically to the nucleus of the solitary tract in the brainstem. Peripherally, they enter the lung alongside branching airways. Labeling of nociceptor Trpv1+ versus peptidergic Tac1+ vagal neurons showed shared and distinct terminal morphology and targeting to airway smooth muscles, vasculature including lymphatics, and alveoli. Notably, a small population of vagal neurons that are Calb1+ preferentially innervate pulmonary neuroendocrine cells, a demonstrated airway sensor population. This atlas of lung innervating neurons serves as a foundation for understanding their function in lung.
Current opinion in pediatrics
Patel, PB;Bearden, D;
PMID: 34734914 | DOI: 10.1097/MOP.0000000000001068
The purpose of this review is to address our current understanding of the pathophysiology of neurologic injury resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection on the developing nervous system.SARS-CoV2 may enter the brain through three potential mechanisms: transsynaptic spread from the olfactory bulb following intranasal exposure, migration across the blood-brain barrier through endothelial cell infection, and migration following disruption of the blood-brain barrier from resulting inflammation. SARS-CoV2 does not appear to directly infect neurons but rather may produce an inflammatory cascade that results in neuronal injury. Additionally, autoantibodies targeting neuronal tissue resulting from the immune response to SARS-CoV2 are present in select patients and may contribute to central nervous system (CNS) injury.These findings suggest that neuronal injury during SARS-CoV2 infection is immune mediated rather than through direct viral invasion. Further multimodal studies evaluating the pathophysiology of neurologic conditions in pediatric patients specifically following SARS-CoV2 infection are needed to improve our understanding of mechanisms driving neurologic injury and to identify potential treatment options.
Cellular and molecular life sciences : CMLS
Tunc-Ozcan, E;Brooker, SM;Bonds, JA;Tsai, YH;Rawat, R;McGuire, TL;Peng, CY;Kessler, JA;
PMID: 34936033 | DOI: 10.1007/s00018-021-04026-y
The benefits of current treatments for depression are limited by low response rates, delayed therapeutic effects, and multiple side effects. Antidepressants affect a variety of neurotransmitter systems in different areas of the brain, and the mechanisms underlying their convergent effects on behavior have been unclear. Here we identify hippocampal bone morphogenetic protein (BMP) signaling as a common downstream pathway that mediates the behavioral effects of five different antidepressant classes (fluoxetine, bupropion, duloxetine, vilazodone, trazodone) and of electroconvulsive therapy. All of these therapies decrease BMP signaling and enhance neurogenesis in the hippocampus. Preventing the decrease in BMP signaling blocks the effect of antidepressant treatment on behavioral phenotypes. Further, inhibition of BMP signaling in hippocampal newborn neurons is sufficient to produce an antidepressant effect, while chemogenetic silencing of newborn neurons prevents the antidepressant effect. Thus, inhibition of hippocampal BMP signaling is both necessary and sufficient to mediate the effects of multiple classes of antidepressants.
Tran, BN;Maass, M;Musial, G;Stern, ME;Gehlsen, U;Steven, P;
PMID: 34922011 | DOI: 10.1016/j.jtos.2021.12.008
Dry eye disease (DED) is a multifactorial disease, with limitations regarding efficacy and tolerability of applied substances. Among several candidates, the endocannabinoid system with its receptors (CB1R and CB2R) were reported to modulate inflammation, wound healing and pain, which are also core DED pathomechanisms. This study is to investigate the therapeutic responses of Δ-9 tetrahydrocannabinol (a non-selective agonist) and two selective antagonists, SR141716A (CB1R antagonist) and SR144528 (CB2R antagonist), as a topical application using a DED mouse model.Experimental DED was induced in naïve C57BL/6 mice. Expression of CBR at the ocular surface of naïve and DED mice was determined by qPCR and in-situ hybridization. Either THC or CBR antagonists were compounded in an aqueous solution and dosed during the induction of DED. Tear production, cornea sensitivity, and cornea fluorescence staining were tested. At the end of each experiment, corneas were stained with β3-tubulin for analysis of corneal nerve morphology. Conjunctiva was analyzed for CD4+ and CD8+ infiltration.CB1R and CB2R are present at the ocular surface, and desiccating stress increased CBR expressions (p < 0.05). After 10 days of DED induction, treated groups demonstrated a reduced CBR expression in the cornea, which was concurrent with improvements in the DED phenotype including fluorescence staining & inflammation. Applying THC protected corneal nerve morphology, thus maintained corneal sensitivity and reduced CD4+ T-cell infiltration. The CB1R antagonist maintained cornea sensitivity without changing nerve morphology.Endocannabinoid receptor modulation presents a potential multi-functional therapeutic approach for DED.
Journal of the College of Physicians and Surgeons--Pakistan : JCPSP
Dogan, Y;Onalan, E;Cavli, C;Onalan, EE;Yakar, B;Donder, E;
PMID: 34794279 | DOI: 10.29271/jcpsp.2021.12.1412
To determine the difference in serum Elabela level in hypertensive patients with and without nephropathy compared to the healthy control group. Study Desing: Cross-sectional descriptive study.Fırat University Medical School, Elazig, Turkey between December 2018 and November 2020.The cross-sectional descriptive study consisted of 37 patients with hypertensive nephropathy (group 3), 50 hypertensive patients without nephropathy (group 2), and 50 healthy controls (group 1). Hypertensive nephropathy was defined as serum creatinine ≥1.8 mg / dl or GFR <40 ml / minute. Biochemical parameters (Glucose, AST, ALT, urea, creatinine, lipid levels, hemogram, calcium, phosphorus, parathormone) and the levels of serum Elabela were evaluated and compared.There was no significant difference in age (0.270) and gender (0.951) between groups. The median Elabela levels of the three groups were 40.3 ng/mL (22.5-54.6), 5.1 ng/mL (3.7-8.3), 9.2 ng/mL (6.1-23.1), respectively with a significant difference (p<0.001).The plasma levels of Elabela were lower in the case of hypertension, independent of nephropathy. However, this decrease is not specific for nephropathy and may be due to other accompanying chronic diseases. Key Words: Hypertension, Hypertensive nephropathy, Elabela.
Williaume, G;de Buyl, S;Sirour, C;Haupaix, N;Bettoni, R;Imai, KS;Satou, Y;Dupont, G;Hudson, C;Yasuo, H;
PMID: 34672970 | DOI: 10.1016/j.devcel.2021.09.025
Precise control of lineage segregation is critical for the development of multicellular organisms, but our quantitative understanding of how variable signaling inputs are integrated to activate lineage-specific gene programs remains limited. Here, we show how precisely two out of eight ectoderm cells adopt neural fates in response to ephrin and FGF signals during ascidian neural induction. In each ectoderm cell, FGF signals activate ERK to a level that mirrors its cell contact surface with FGF-expressing mesendoderm cells. This gradual interpretation of FGF inputs is followed by a bimodal transcriptional response of the immediate early gene, Otx, resulting in its activation specifically in the neural precursors. At low levels of ERK, Otx is repressed by an ETS family transcriptional repressor, ERF2. Ephrin signals are critical for dampening ERK activation levels across ectoderm cells so that only neural precursors exhibit above-threshold levels, evade ERF repression, and "switch on" Otx transcription.