Differentiation of Sensory Neuron Lineage During the Late First and Early Second Trimesters of Human Foetal Development
Quinn, RK;Drury, HR;Lim, R;Callister, RJ;Tadros, MA;
PMID: 34033872 | DOI: 10.1016/j.neuroscience.2021.05.018
Sensory neurons within DRGs are broadly divided into three types that transmit nociceptive, mechanical, and proprioceptive signals. These subtypes are established during in utero development when sensory neurons differentiate into distinct categories according to a complex developmental plan. Most of what we know about this developmental plan comes from studies in rodents and little is known about this process in humans. The present study documents the expression of key genes involved in human sensory neuron development during the late first and early second trimesters (9-16WG). We observed a decrease in the expression of SOX10 and BRN3A, factors associated with migration and proliferation of sensory neurons, towards the end of the first trimester. Small and large sensory neuron populations also emerged at the end of the first trimester, as well as the transcription factors responsible for defining distinct sensory neuron types. NTRK1, which is expressed in nociceptive neurons, emerged first at ~11 WG followed by NTRK2 in mechanoreceptors at ~12 WG, with NTRK3 for proprioceptors peaking at ~14 WG. These peaks were followed by increased expression of their respective neurotrophic factors. Our results show significant differences in the expression of key signalling molecules for human DRG development versus that of rodents, most notably the expression of neurotrophins that promote the survival of sensory neuron types. This highlights the importance of examining molecular changes in humans to better inform the application of data collected in pre-clinical models.
The melanocortin-3 receptor is a pharmacological target for the regulation of anorexia
Science translational medicine
Sweeney, P;Bedenbaugh, MN;Maldonado, J;Pan, P;Fowler, K;Williams, SY;Gimenez, LE;Ghamari-Langroudi, M;Downing, G;Gui, Y;Hadley, CK;Joy, ST;Mapp, AK;Simerly, RB;Cone, RD;
PMID: 33883274 | DOI: 10.1126/scitranslmed.abd6434
Ablation of hypothalamic AgRP (Agouti-related protein) neurons is known to lead to fatal anorexia, whereas their activation stimulates voracious feeding and suppresses other motivational states including fear and anxiety. Despite the critical role of AgRP neurons in bidirectionally controlling feeding, there are currently no therapeutics available specifically targeting this circuitry. The melanocortin-3 receptor (MC3R) is expressed in multiple brain regions and exhibits sexual dimorphism of expression in some of those regions in both mice and humans. MC3R deletion produced multiple forms of sexually dimorphic anorexia that resembled aspects of human anorexia nervosa. However, there was no sexual dimorphism in the expression of MC3R in AgRP neurons, 97% of which expressed MC3R. Chemogenetic manipulation of arcuate MC3R neurons and pharmacologic manipulation of MC3R each exerted potent bidirectional regulation over feeding behavior in male and female mice, whereas global ablation of MC3R-expressing cells produced fatal anorexia. Pharmacological effects of MC3R compounds on feeding were dependent on intact AgRP circuitry in the mice. Thus, the dominant effect of MC3R appears to be the regulation of the AgRP circuitry in both male and female mice, with sexually dimorphic sites playing specialized and subordinate roles in feeding behavior. Therefore, MC3R is a potential therapeutic target for disorders characterized by anorexia, as well as a potential target for weight loss therapeutics.
The effect of nerve growth factor on supporting spatial memory depends upon hippocampal cholinergic innervation
Eu, WZ;Chen, YJ;Chen, WT;Wu, KY;Tsai, CY;Cheng, SJ;Carter, RN;Huang, GJ;
PMID: 33723225 | DOI: 10.1038/s41398-021-01280-3
Nerve growth factor (NGF) gene therapy has been used in clinical trials of Alzheimer's disease. Understanding the underlying mechanisms of how NGF influences memory may help develop new strategies for treatment. Both NGF and the cholinergic system play important roles in learning and memory. NGF is essential for maintaining cholinergic innervation of the hippocampus, but it is unclear whether the supportive effect of NGF on learning and memory is specifically dependent upon intact hippocampal cholinergic innervation. Here we characterize the behavior and hippocampal measurements of volume, neurogenesis, long-term potentiation, and cholinergic innervation, in brain-specific Ngf-deficient mice. Our results show that knockout mice exhibit increased anxiety, impaired spatial learning and memory, decreased adult hippocampal volume, neurogenesis, short-term potentiation, and cholinergic innervation. Overexpression of Ngf in the hippocampus of Ngf gene knockout mice rescued spatial memory and partially restored cholinergic innervations, but not anxiety. Selective depletion of hippocampal cholinergic innervation resulted in impaired spatial memory. However, Ngf overexpression in the hippocampus failed to rescue spatial memory in mice with hippocampal-selective cholinergic fiber depletion. In conclusion, we demonstrate the impact of Ngf deficiency in the brain and provide evidence that the effect of NGF on spatial memory is reliant on intact cholinergic innervations in the hippocampus. These results suggest that adequate cholinergic targeting may be a critical requirement for successful use of NGF gene therapy of Alzheimer's disease.
The Perils of Navigating Activity-Dependent Alternative Splicing of Neurexins
Frontiers in molecular neuroscience
Liakath-Ali, K;Südhof, TC;
PMID: 33767611 | DOI: 10.3389/fnmol.2021.659681
Neurexins are presynaptic cell-adhesion molecules essential for synaptic function that are expressed in thousands of alternatively spliced isoforms. Recent studies suggested that alternative splicing at splice site 4 (SS4) of Nrxn1 is tightly regulated by an activity-dependent mechanism. Given that Nrxn1 alternative splicing at SS4 controls NMDA-receptor-mediated synaptic responses, activity-dependent SS4 alternative splicing would suggest a new synaptic plasticity mechanism. However, conflicting results confound the assessment of neurexin alternative splicing, prompting us to re-evaluate this issue. We find that in cortical cultures, membrane depolarization by elevated extracellular K+-concentrations produced an apparent shift in Nrxn1-SS4 alternative splicing by inducing neuronal but not astroglial cell death, resulting in persistent astroglial Nrxn1-SS4+ expression and decreased neuronal Nrxn1-SS4- expression. in vivo, systemic kainate-induced activation of neurons in the hippocampus produced no changes in Nrxn1-SS4 alternative splicing. Moreover, focal kainate injections into the mouse cerebellum induced small changes in Nrxn1-SS4 alternative splicing that, however, were associated with large decreases in Nrxn1 expression and widespread DNA damage. Our results suggest that although Nrxn1-SS4 alternative splicing may represent a mechanism of activity-dependent synaptic plasticity, common procedures for testing this hypothesis are prone to artifacts, and more sophisticated approaches will be necessary to test this important question.
SOX9 is required for kidney fibrosis and activates NAV3 to drive renal myofibroblast function
Raza, S;Jokl, E;Pritchett, J;Martin, K;Su, K;Simpson, K;Birchall, L;Mullan, AF;Athwal, VS;Doherty, DT;Zeef, L;Henderson, NC;Kalra, PA;Hanley, NA;Piper Hanley, K;
PMID: 33653921 | DOI: 10.1126/scisignal.abb4282
Renal fibrosis is a common end point for kidney injury and many chronic kidney diseases. Fibrogenesis depends on the sustained activation of myofibroblasts, which deposit the extracellular matrix that causes progressive scarring and organ failure. Here, we showed that the transcription factor SOX9 was associated with kidney fibrosis in humans and required for experimentally induced kidney fibrosis in mice. From genome-wide analysis, we identified Neuron navigator 3 (NAV3) as acting downstream of SOX9 in kidney fibrosis. NAV3 increased in abundance and colocalized with SOX9 after renal injury in mice, and both SOX9 and NAV3 were present in diseased human kidneys. In an in vitro model of renal pericyte transdifferentiation into myofibroblasts, we demonstrated that NAV3 was required for multiple aspects of fibrogenesis, including actin polymerization linked to cell migration and sustained activation of the mechanosensitive transcription factor YAP1. In summary, our work identifies a SOX9-NAV3-YAP1 axis involved in the progression of kidney fibrosis and points to NAV3 as a potential target for pharmacological intervention.
FoxL1+ mesenchymal cells are a critical source of Wnt5a for midgut elongation during mouse embryonic intestinal development
Kondo, A;Kaestner, K;
| DOI: 10.1016/j.cdev.2021.203662
Wnt5a is a non-canonical Wnt ligand that is essential for normal embryonic development in mammals. The role of Wnt5a in early intestinal development has been examined in gene ablation models, where _Wnt5a__−/−_ mice exhibit strikingly shortened intestines. However, the exact cellular source of Wnt5a has remained elusive, until a recent study found that FoxL1-expressing mesenchymal cells (FoxL1+ cells), which are localized directly beneath the intestinal epithelium, express Wnt5a. To determine whether FoxL1+ cells are a required source of Wnt5a during intestinal development, we derived _FoxL1-Cre; Wnt5a__f/f_ mice, which is the first mouse model to ablate Wnt5a in a cell type-specific manner in the intestine _in vivo_. Our results show that Wnt5a deletion in FoxL1+ cells during fetal life causes a shortened gut phenotype in neonatal mice, and that our model is sufficient to increase rate of apoptosis in the elongating epithelium, thus explaining the shortened gut phenotype. However, in contrast to previous studies using Wnt5a null mice, we did not observe dysregulation of epithelial structure or apical-basal protein localization. Altogether, our findings establish a developmental role for FoxL1+ mesenchymal cells in controlling non-canonical Wnt signaling during midgut elongation.
KLHDC7B-DT aggravates pancreatic ductal adenocarcinoma development via inducing cross-talk between cancer cells and macrophages
Clinical science (London, England : 1979)
Li, MX;Wang, HY;Yuan, CH;Ma, ZL;Jiang, B;Li, L;Zhang, L;Xiu, DR;
PMID: 33538300 | DOI: 10.1042/CS20201259
Tumor microenvironment (TME) exerts key roles in pancreatic ductal adenocarcinoma (PDAC) development. However, the factors regulating the cross-talk between PDAC cells and TME are largely unknown. In the present study, we identified a long noncoding RNA (lncRNA) KLHDC7B divergent transcript (KLHDC7B-DT), which was up-regulated in PDAC and correlated with poor survival of PDAC patients. Functional assays demonstrated that KLHDC7B-DT enhanced PDAC cell proliferation, migration, and invasion. Mechanistically, KLHDC7B-DT was found to directly bind IL-6 promoter, induce open chromatin structure at IL-6 promoter region, activate IL-6 transcription, and up-regulate IL-6 expression and secretion. The expression of KLHDC7B-DT was positively correlated with IL-6 in PDAC tissues. Via inducing IL-6 secretion, KLHDC7B-DT activated STAT3 signaling in PDAC cells in an autocrine manner. Furthermore, KLHDC7B-DT also activated STAT3 signaling in macrophages in a paracrine manner, which induced macrophage M2 polarization. KLHDC7B-DT overexpressed PDAC cells-primed macrophages promoted PDAC cell proliferation, migration, and invasion. Blocking IL-6/STAT3 signaling reversed the effects of KLHDC7B-DT on macrophage M2 polarization and PDAC cell proliferation, migration, and invasion. In conclusion, KLHDC7B-DT enhanced malignant behaviors of PDAC cells via IL-6-induced macrophage M2 polarization and IL-6-activated STAT3 signaling in PDAC cells. The cross-talk between PDAC cells and macrophages induced by KLHDC7B-DT represents potential therapeutic target for PDAC.
CD8+ T cells fail to limit SIV reactivation following ART withdrawal until after viral amplification
The Journal of clinical investigation
Okoye, AA;Duell, DD;Fukazawa, Y;Varco-Merth, B;Marenco, A;Behrens, H;Chaunzwa, TM;Selseth, AN;Gilbride, RM;Shao, J;Edlefsen, PT;Geleziunas, R;Pinkevych, M;Davenport, MP;Busman-Sahay, K;Nekorchuk, MD;Park, H;Smedley, JV;Axthelm, MK;Estes, JD;Hansen, SG;Keele, BF;Lifson, JD;Picker, LJ;
PMID: 33630764 | DOI: 10.1172/JCI141677
To define the contribution of CD8+ T cell responses to control of SIV reactivation during and following antiretroviral therapy (ART), we determined the effect of long-term CD8+ T cell depletion using a rhesusized anti-CD8β monoclonal antibody (mAb) on barcoded SIVmac239 dynamics on stable ART and after ART cessation in Rhesus Macaques (RMs). Among the RMs with full CD8+ T cell depletion in both blood and tissue, there were no significant differences in the frequency of viral blips in plasma, the number of SIV RNA+ cells and the average number of RNA copies/infected cell in tissue, and levels of cell-associated SIV RNA and DNA in blood and tissue relative to control-treated RM during ART. Upon ART cessation, both CD8+ T cell-depleted and control RMs rebounded in <12 days with no difference in the time to viral rebound, or in either the number or growth rate of rebounding SIVmac239M barcode clonotypes. However, effectively CD8+ T cell-depleted RMs showed a stable ~2-log increase in post-ART plasma viremia relative to controls. These results indicate that while potent anti-viral CD8+ T cell responses can develop during ART-suppressed SIV infection, these responses effectively intercept post-ART SIV rebound only after systemic viral replication, too late to limit reactivation frequency or the early spread of reactivating SIV reservoirs.
SUV39H2 controls trophoblast stem cell fate
Biochimica et biophysica acta. General subjects
Wang, L;Chakraborty, D;Iqbal, K;Soares, MJ;
PMID: 33556426 | DOI: 10.1016/j.bbagen.2021.129867
The placenta is formed by the coordinated expansion and differentiation of trophoblast stem (TS) cells along a multi-lineage pathway. Dynamic regulation of histone 3 lysine 9 (H3K9) methylation is pivotal to cell differentiation for many cell lineages, but little is known about its involvement in trophoblast cell development. Expression of H3K9 methyltransferases was surveyed in rat TS cells maintained in the stem state and following differentiation. The role of suppressor of variegation 3-9 homolog 2 (SUV39H2) in the regulation of trophoblast cell lineage development was investigated using a loss-of-function approach in rat TS cells and ex vivo cultured rat blastocysts. Among the twelve-known H3K9 methyltransferases, only SUV39H2 exhibited robust differential expression in stem versus differentiated TS cells. SUV39H2 transcript and protein expression were high in the stem state and declined as TS cells differentiated. Disruption of SUV39H2 expression in TS cells led to an arrest in TS cell proliferation and activation of trophoblast cell differentiation. SUV39H2 regulated H3K9 methylation status at loci exhibiting differentiation-dependent gene expression. Analyses of SUV39H2 on ex vivo rat blastocyst development supported its role in regulating TS cell expansion and differentiation. We further identified SUV39H2 as a downstream target of caudal type homeobox 2, a master regulator of trophoblast lineage development. Our findings indicate that SUV39H2 contributes to the maintenance of TS cells and restrains trophoblast cell differentiation. SUV39H2 serves as a contributor to the epigenetic regulation of hemochorial placental development.
Sonic Hedgehog receptor Patched deficiency in astrocytes enhances glucose metabolism in mice
Tirou, L;Russo, M;Faure, H;Pellegrino, G;Demongin, C;Daynac, M;Sharif, A;Amosse, J;Le Lay, S;Denis, R;Luquet, S;Taouis, M;Benomar, Y;Ruat, M;
PMID: 33513436 | DOI: 10.1016/j.molmet.2021.101172
Astrocytes are glial cells proposed as the main Sonic Hedgehog (Shh)-responsive cells in the adult brain. Their roles in mediating Shh functions are still poorly understood. In the hypothalamus, astrocytes support neuronal circuits implicated in the regulation of energy metabolism. Here, we investigated the impact of genetic activation of Shh signaling on hypothalamic astrocytes and characterized its effects on energy metabolism. We analyzed the distribution of gene transcripts of the Shh pathway (Ptc, Gli1, Gli2, Gli3) in astrocytes using single molecule fluorescence in situ hybridization combined to immunohistofluorescence and of Shh peptides by Western blotting in the adult mouse hypothalamus. Based on the metabolic phenotype, we characterized Glast-CreERT2-YFP-Ptc-/- (YFP-Ptc-/-) mice and their controls over time and under high-fat-diet (HFD) to investigate the potential effects of conditional astrocytic deletion of the Shh receptor Patched (Ptc) on metabolic efficiency, insulin sensitivity and systemic glucose metabolism. Molecular and biochemical assays were used to analyze the alteration of key pathways modulating energy metabolism, insulin sensitivity, glucose uptake and inflammation. Primary astrocyte cultures were used to evaluate a potential role of Shh signaling in astrocytic glucose uptake. Shh peptides were the highest in the hypothalamic extracts of adult mice and a large population of hypothalamic astrocytes expressed Ptc and Gli1-3 mRNAs. Characterization of Shh signaling after conditional Ptc deletion in YFP-Ptc-/- mice revealed heterogeneity in hypothalamic astrocyte populations. Interestingly, the activation of Shh signaling in Glast+ astrocytes enhanced insulin responsiveness as evidenced by glucose and insulin tolerance tests. This effect was maintained over time and associated with lower blood insulin levels and was also observed under HFD. YFP-Ptc-/- mice exhibited a lean phenotype with the absence of body weight gain and a marked reduction of white and brown adipose tissues accompanied by increased whole body fatty acid oxidation. In contrast, food intake, locomotor activity and body temperature were not altered. At the cellular level, Ptc deletion did not affect glucose uptake in primary astrocyte cultures. In the hypothalamus, the activation of astrocytic Shh pathway was associated with the upregulation of transcripts coding for the insulin receptor and the Liver Kinase B1 (LKB1) after 4 weeks, and for the glucose transporter Glut-4 after 32 weeks. Here, we define hypothalamic Shh action on astrocytes as a novel master regulator of energy metabolism. In the hypothalamus, astrocytic Shh signaling could be critically involved in preventing both aging- and obesity-related metabolic disorders.
Garcia, D;Wilmouth, J;Olabe, J;Martinez, A;Val, P;
| DOI: 10.1530/endoabs.90.p277
Maturation of the definitive adrenal cortex occurs between 3 and 6 weeks post-partum and involves onset of CYP11B2 expression and establishment of the laminin-encased 3D structure of glomeruli that contain rosettes of 10 to 15 zona glomerulosa (zG) cells that work in coordination to produce optimal amounts of aldosterone. Although this process is dependent on canonical WNT/b-catenin signaling, cellular sources of WNT ligands remain elusive and the mechanisms involved in the extensive extra-cellular matrix remodeling associated with rosette/glomeruli morphogenesis are unknown. Beyond their role in innate immunity, macrophages are involved in extra-cellular matrix remodeling under a wide variety of pathophysiological conditions and have the capacity to produce WNT ligands. This, together with the presence of macrophages within the zG cells, strongly suggest that macrophages may play a role in zG morphogenesis and differentiation. Supporting this idea, a recent publication has shown that intra-tissular aldosterone concentration was reduced in the absence of macrophages under stress conditions. However, whether macrophages play a direct role in controlling aldosterone secretion or an indirect role by remodelling the postnatal zG is unknown. The presence of tissue resident macrophages in a specific zone is dependent on the production of trophic factors such as IL34, CSF1, CSF2 or CX3CL1 by nearby, tissue resident ‘niche’ cells. In return, macrophages are thought to provide positive ‘feedback’ signals to their niche, generating mutually beneficial circuits between the niche and its macrophages. To gain insight into the role of macrophages in zG morphogenesis and homeostasis, we used single cell sequencing and RNAscope analyses to show expression of CX3CL1 in the zG and of CX3CR1 in macrophages. Interestingly, CX3CL1 expression in the zG was downstream of WNT signalling, suggesting existence of a bi-directional interaction between macrophages and zG. To further study the role of macrophages during the maturation of the zG, we pharmacologically depleted macrophages by the small molecule inhibitor Pexidartinib at different time points between 3- and 12-weeks post-partum, when maturation of the zG occurs. Short-term depletion of macrophages resulted in a more disorganized and elongated zG, suggesting a delay in maturation. However, long-term depletion of macrophages resulted in exacerbated maturation of the rosettes, suggesting that the short-term zG defect was followed by establishment of a compensatory mechanism to allow formation of rosettes even in the absence of macrophages. Whether these perturbations of the zG are correlated with an altered production of aldosterone is still under study.
The Rac-GAP alpha2-chimaerin signals via CRMP2 and stathmins in the development of the ocular motor system
The Journal of neuroscience : the official journal of the Society for Neuroscience
Carretero-Rodriguez, L;Guðjónsdóttir, R;Poparic, I;Reilly, ML;Chol, M;Bianco, IH;Chiapello, M;Feret, R;Deery, MJ;Guthrie, S;
PMID: 34168008 | DOI: 10.1523/JNEUROSCI.0983-19.2021
A precise sequence of axon guidance events is required for the development of the ocular motor system. Three cranial nerves grow towards, and connect with, six extraocular muscles in a stereotyped pattern, in order to control eye movements. The signalling protein alpha2-chimaerin (α2-CHN) plays a pivotal role in the formation of the ocular motor system; mutations in CHN1, encoding α2-CHN, cause the human eye movement disorder Duane Retraction Syndrome (DRS). Our research has demonstrated that manipulation of α2-chn signalling in the zebrafish embryo leads to ocular motor axon wiring defects, although the signalling cascades regulated by α2-chn remain poorly understood. Here, we demonstrate that several cytoskeletal regulatory proteins - collapsin response mediator protein 2 (CRMP2), (encoded by the gene dpysl2), stathmin1 and stathmin 2 - bind to α2-CHN. dpysl2, stathmin1 and especially stathmin2 are expressed by ocular motor neurons. We find that manipulation of dpysl2 and of stathmins in zebrafish larvae leads to defects in both the axon wiring of the ocular motor system and the optokinetic reflex, impairing horizontal eye movements. Knockdowns of these molecules in zebrafish larvae of either sex caused axon guidance phenotypes that included defasciculation and ectopic branching; in some cases these phenotypes were reminiscent of DRS. chn1 knockdown phenotypes were rescued by overexpression of CRMP2 and STMN1, suggesting that these proteins act in the same signalling pathway. These findings suggest that CRMP2 and stathmins signal downstream of α2-CHN to orchestrate ocular motor axon guidance, and to control eye movements.Significance statementThe precise control of eye movement is crucial for the life of vertebrate animals, including humans. In humans, this control depends on the arrangement of nerve wiring of the ocular motor system, composed of three nerves and six muscles, a system that is conserved across vertebrate phyla. Mutations in the protein alpha2-chimaerin have previously been shown to cause eye movement disorders (squint) and axon wiring defects in humans. Our recent work has unravelled how alpha2-chimaerin co-ordinates axon guidance of the ocular motor system in animal models. In this paper, we demonstrate key roles for the proteins CRMP2 and stathmin 1/2 in the signalling pathway orchestrated by alpha2-chimaerin, potentially giving insight into the aetiology of eye movement disorders in humans.