ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.
J Neurosci. 2014 Mar 26;34(13):4481-93.
Farris S, Lewandowski G, Cox CD, Steward O.
PMID: 24671994 | DOI: 10.1523/JNEUROSCI.4944-13.2014.
J Neuropathol Exp Neurol.
2017 Dec 11
Zapka Z, Dörner E, Dreschmann V, Sakamato N, Kristiansen G, Calaminus G, Vokuhl C, MD, Leuschner I, Pietsch T.
PMID: 29237087 | DOI: 10.1093/jnen/nlx106
Central nervous system germinomas are characterized by a massive immune cell infiltrate. We systematically characterized these immune cells in 28 germinomas by immunophenotyping and image analysis. mRNA expression was analyzed by Nanostring technology and in situ RNA hybridization. Tumor infiltrating lymphocytes (TILs) were composed of 61.8% ± 3.1% (mean ± SE) CD3-positive T cells, including 45.2% ± 3.5% of CD4-positive T-helper cells, 23.4% ± 1.5% of CD8-positive cytotoxic T cells, 5.5% ± 0.9% of FoxP3-positive regulatory T cells, and 11.9% ±1.3% PD-1-positive TILs. B cells accounted for 35.8% ± 2.9% of TILs and plasma cells for 9.3% ± 1.6%. Tumor-associated macrophages consisted of clusters of activated PD-L1-positive macrophages and interspersed anti-inflammatory macrophages expressing CD163. Germinoma cells did not express PD-L1. Expression of genes encoding immune cell markers and cytokines was high and comparable to mRNA levels in lymph node tissue. IFNG and IL10 mRNA was detected in subfractions of TILs and in PD-L1-positive macrophages. Taken together, the strong immune reaction observed in germinomas involves inflammatory as well as various suppressive mechanisms. Expression of PD-1 and PD-L1 and infiltration of cytotoxic T cells are biomarkers predictive of response to anti-PD-1/PD-L1 therapies, constituting a rationale for possible novel treatment approaches.
Neuron. 2018 Oct 12.
2018 Oct 12
Blanco-Suarez E, Liu TF, Kopelevich A, Allen NJ.
PMID: 30344043 | DOI: 10.1016/j.neuron.2018.09.043
Animals : an open access journal from MDPI
2022 Oct 04
Schöniger, S;Jasani, B;
PMID: 36230402 | DOI: 10.3390/ani12192661
Oncotarget.
2016 Sep 15
Mei Y, Bi WL, Greenwald NF, Du Z, Agar NY, Kaiser UB, Woodmansee WW, Reardon DA, Freeman GJ, Fecci PE, Laws ER Jr, Santagata S, Dunn GP, Dunn IF.
PMID: 27655724 | DOI: 10.18632/oncotarget.12088
Abstract
PURPOSE:
Subsets of pituitary tumors exhibit an aggressive clinical courses and recur despite surgery, radiation, and chemotherapy. Because modulation of the immune response through inhibition of T-cell checkpoints has led to durable clinical responses in multiple malignancies, we explored whether pituitary adenomas express immune-related biomarkers that could suggest suitability for immunotherapy. Specifically, programmed death ligand 1 (PD-L1) has emerged as a potential biomarker whose expression may portend more favorable responses to immune checkpoint blockade therapies. We thus investigated the expression of PD-L1 in pituitary adenomas.
METHODS:
PD-L1 RNA and protein expression were evaluated in 48 pituitary tumors, including functioning and non-functioning adenomas as well as atypical and recurrent tumors. Tumor infiltrating lymphocyte populations were also assessed by immunohistochemistry.
RESULTS:
Pituitary tumors express variable levels of PD-L1 transcript and protein. PD-L1 RNA and protein expression were significantly increased in functioning (growth hormone and prolactin-expressing) pituitary adenomas compared to non-functioning (null cell and silent gonadotroph) adenomas. Moreover, primary pituitary adenomas harbored higher levels of PD-L1 mRNA compared to recurrent tumors. Tumor infiltrating lymphocytes were observed in all pituitary tumors and were positively correlated with increased PD-L1 expression, particularly in the functional subtypes.
CONCLUSIONS:
Human pituitary adenomas harbor PD-L1 across subtypes, with significantly higher expression in functioning adenomas compared to non-functioning adenomas. This expression is accompanied by the presence of tumor infiltrating lymphocytes. These findings suggest the existence of an immune response to pituitary tumors and raise the possibility of considering checkpoint blockade immunotherapy in cases refractory to conventional management.
Neurobiol Learn Mem.
2019 Apr 01
Gobin C, Shallcross J, Schwendt M.
PMID: 30946882 | DOI: 10.1016/j.nlm.2019.03.007
Cocaine use disorder (CUD) is associated with prefrontal cortex dysfunction and cognitive deficits that may contribute to persistent relapse susceptibility. As the relationship between cognitive deficits, cortical abnormalities and drug seeking is poorly understood, development of relevant animal models is of high clinical importance. Here, we used an animal model to characterize working memory and reversal learning in rats with a history of extended access cocaine self-administration and prolonged abstinence. We also investigated immediate and long-term functional changes within the prelimbic cortex (PrL) in relation to cognitive performance and drug-seeking. Adult male rats underwent 6 days of short-access (1 h/day) followed by 12 days of long-access (6 h/day) cocaine self-administration, or received passive saline infusions. Next, rats were tested in delayed match-to-sample (DMS) and (non)match-to-sample (NMS) tasks, and finally in a single context + cue relapse test on day 90 of abstinence. We found that a history of chronic cocaine self-administration impaired working memory, though sparing reversal learning, and that the components of these cognitive measures correlated with later drug-seeking. Further, we found that dysregulated metabolic activity and mGlu5 receptor signaling in the PrL of cocaine rats correlated with past working memory performance and/or drug-seeking, as indicated by the analysis of cytochrome oxidase reactivity, mGlu5 and Homer 1b/c protein expression, as well as Arc mRNA expression in mGlu5-positive cells. These findings advocate for a persistent post-cocaine PrL dysfunction, rooted in ineffective compensatory changes and manifested as impaired working memory performance and hyperreactivity to cocaine cues. Considering the possible interplay between the neural correlates underlying post-cocaine cognitive deficits and drug-seeking, cognitive function should be evaluated and considered when developing neurobiologically-based treatments of cocaine relapse.
Oncotarget
2017 Feb 17
Koh J, Ock CY, Kim JW, Nam SK, Kwak Y, Yun S, Ahn SH, Park DJ, Kim HH, Kim WH, Lee HS.
PMID: - | DOI: 10.18632/oncotarget.15465
We co-assessed PD-L1 expression and CD8+ tumor-infiltrating lymphocytes in gastric cancer (GC), and categorized into 4 microenvironment immune types. Immunohistochemistry (PD-L1, CD8, Foxp3, E-cadherin, and p53), PD-L1 mRNA in situ hybridization (ISH), microsatellite instability (MSI), and EBV ISH were performed in 392 stage II/III GCs treated with curative surgery and fluoropyrimidine-based adjuvant chemotherapy, and two public genome databases were analyzed for validation. PD-L1+ was found in 98/392 GCs (25.0%). The proportions of immune types are as follows: PD-L1+/CD8High, 22.7%; PD-L1−/CD8Low, 22.7%; PD-L1+/CD8Low, 2.3%; PD-L1−/CD8High, 52.3%. PD-L1+/CD8High type accounted for majority of EBV+ and MSI-high (MSI-H) GCs (92.0% and 66.7%, respectively), and genome analysis from public datasets demonstrated similar pattern. PD-L1−/CD8High showed the best overall survival (OS) and PD-L1−/CD8Low the worst (P < 0.001). PD-L1 expression alone was not associated with OS, however, PD-L1−/CD8High type compared to PD-L1+/CD8High was independent favorable prognostic factor of OS by multivariate analysis (P = 0.042). Adaptation of recent molecular classification based on EBV, MSI, E-cadherin, and p53 showed no significant survival differences. These findings support the close relationship between PD-L1/CD8 status based immune types and EBV+, MSI-H GCs, and their prognostic significance in stage II/III GCs.
Hum Pathol. 2018 Dec 27.
2018 Dec 27
Guo D, Zhao X, Wang A, Xie Q, Xu X, Sun J.
PMID: 30594747 | DOI: 10.1016/j.humpath.2018.10.041
PloS one
2023 Apr 19
Eom, K;
PMID: 37075035 | DOI: 10.1371/journal.pone.0281458
Cell Rep.
2018 May 01
Candido JB, Morton JP, Bailey P, Campbell AD, Karim SA, Jamieson T, Lapienyte L, Gopinathan A, Clark W, McGhee EJ, Wang J, Escorcio-Correia M, Zollinger R, Roshani R, Drew L, Rishi L, Arkell R, Evans TRJ, Nixon C, Jodrell DI, Wilkinson RW, Biankin AV, Bar
PMID: 29719257 | DOI: 10.1016/j.celrep.2018.03.131
Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced T cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors.
Arch Pathol Lab Med.
2016 Nov 01
Dolled-Filhart M, Locke D, Murphy T, Lynch F, Yearley JH, Frisman D, Pierce R, Weiner R, Wu D, Emancipator K.
PMID: 27788043 | DOI: 10.5858/arpa.2015-0544-OA
Nat Commun
2019 May 20
Rao-Ruiz P, Couey JJ, Marcelo IM, Bouwkamp CG, Slump DE, Matos MR, van der Loo RJ, Martins GJ, van den Hout M, van IJcken WF, Costa RM, van den Oever MC, Kushner SA.
PMID: 31110186 | DOI: 10.1038/s41467-019-09960-x
Sparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally implicated in the encoding of contextual fear memories. However, engram-specific molecular mechanisms underlying memory consolidation remain largely unknown. Here we perform unbiased RNA sequencing of DG engram neurons 24 h after contextual fear conditioning to identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit a highly distinct pattern of gene expression, in which CREB-dependent transcription features prominently (P = 6.2 × 10-13), including Atf3 (P = 2.4 × 10-41), Penk (P = 1.3 × 10-15), and Kcnq3 (P = 3.1 × 10-12). Moreover, we validate the functional relevance of the RNAseq findings by establishing the causal requirement of intact CREB function specifically within the DG engram during memory consolidation, and identify a novel group of CREB target genes involved in the encoding of long-term memory
Description | ||
---|---|---|
sense Example: Hs-LAG3-sense | Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe. | |
Intron# Example: Mm-Htt-intron2 | Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection | |
Pool/Pan Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G) | A mixture of multiple probe sets targeting multiple genes or transcripts | |
No-XSp Example: Hs-PDGFB-No-XMm | Does not cross detect with the species (Sp) | |
XSp Example: Rn-Pde9a-XMm | designed to cross detect with the species (Sp) | |
O# Example: Mm-Islr-O1 | Alternative design targeting different regions of the same transcript or isoforms | |
CDS Example: Hs-SLC31A-CDS | Probe targets the protein-coding sequence only | |
EnEm | Probe targets exons n and m | |
En-Em | Probe targets region from exon n to exon m | |
Retired Nomenclature | ||
tvn Example: Hs-LEPR-tv1 | Designed to target transcript variant n | |
ORF Example: Hs-ACVRL1-ORF | Probe targets open reading frame | |
UTR Example: Hs-HTT-UTR-C3 | Probe targets the untranslated region (non-protein-coding region) only | |
5UTR Example: Hs-GNRHR-5UTR | Probe targets the 5' untranslated region only | |
3UTR Example: Rn-Npy1r-3UTR | Probe targets the 3' untranslated region only | |
Pan Example: Pool | A mixture of multiple probe sets targeting multiple genes or transcripts |
Complete one of the three forms below and we will get back to you.
For Quote Requests, please provide more details in the Contact Sales form below
Our new headquarters office starting May 2016:
7707 Gateway Blvd.
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798
19 Barton Lane
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420
20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051
021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn
For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com