Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (68)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • Lgr5 (151) Apply Lgr5 filter
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • (-) Remove CXCL10 filter CXCL10 (31)
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (18) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope Fluorescent Multiplex Assay (15) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope (9) Apply RNAscope filter
  • RNAscope 2.5 HD Brown Assay (4) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 HD Duplex (4) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.0 Assay (3) Apply RNAscope 2.0 Assay filter
  • RNAscope 2.5 HD Red assay (2) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.5 LS Assay (2) Apply RNAscope 2.5 LS Assay filter
  • RNAscope Multiplex Fluorescent v2 (2) Apply RNAscope Multiplex Fluorescent v2 filter
  • Basescope (1) Apply Basescope filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter

Research area

  • Neuroscience (36) Apply Neuroscience filter
  • Cancer (9) Apply Cancer filter
  • Infectious Disease (5) Apply Infectious Disease filter
  • Inflammation (5) Apply Inflammation filter
  • Infectious (2) Apply Infectious filter
  • Liver (2) Apply Liver filter
  • Pain (2) Apply Pain filter
  • Addiction (1) Apply Addiction filter
  • Anxiety (1) Apply Anxiety filter
  • Behavior (1) Apply Behavior filter
  • Breathing Patterns (1) Apply Breathing Patterns filter
  • Chronic Kidney Disease (1) Apply Chronic Kidney Disease filter
  • Circadian Rhythms (1) Apply Circadian Rhythms filter
  • Coping Behavior (1) Apply Coping Behavior filter
  • Covid (1) Apply Covid filter
  • Development (1) Apply Development filter
  • Immuno (1) Apply Immuno filter
  • Infectious Disease: Ebola Virus (1) Apply Infectious Disease: Ebola Virus filter
  • Inflammtion (1) Apply Inflammtion filter
  • Kidney (1) Apply Kidney filter
  • Kidney Fibrosis (1) Apply Kidney Fibrosis filter
  • Nephrology (1) Apply Nephrology filter
  • Nueroscience (1) Apply Nueroscience filter
  • Opioid use disorder (1) Apply Opioid use disorder filter
  • Other (1) Apply Other filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: lymphadenopathy (1) Apply Other: lymphadenopathy filter
  • Other: Metabolism (1) Apply Other: Metabolism filter
  • Other: Opioid Tolerance (1) Apply Other: Opioid Tolerance filter
  • Other: Opioid use disorder (1) Apply Other: Opioid use disorder filter
  • Other: Opioid-induced respiratory depression (1) Apply Other: Opioid-induced respiratory depression filter
  • Other: Single-cell transcriptomics (1) Apply Other: Single-cell transcriptomics filter
  • Other: Veterinary Research (1) Apply Other: Veterinary Research filter
  • Parkinson's Disease (1) Apply Parkinson's Disease filter
  • Physcology (1) Apply Physcology filter
  • Pulmonary Hypertension (1) Apply Pulmonary Hypertension filter
  • Pulmonology (1) Apply Pulmonology filter
  • Sensory Neuroscience (1) Apply Sensory Neuroscience filter
  • Stress (1) Apply Stress filter
  • T Cells (1) Apply T Cells filter

Category

  • Publications (68) Apply Publications filter
γδ T cells and the immune response to respiratory syncytial virus infection.

Vet Immunol Immunopathol.

2016 Feb 21

McGill JL, Sacco RE.
PMID: 26923879 | DOI: 10.1016/j.vetimm.2016.02.012

γδ T cells are a subset of nonconventional T cells that play a critical role in bridging the innate and adaptive arms of the immune system. γδ T cells are particularly abundant in ruminant species and may constitute up to 60% of the circulating lymphocyte pool in young cattle. The frequency of circulating γδ T cells is highest in neonatal calves and declines as the animal ages, suggesting these cells may be particularly important in the immune system of the very young. Bovine respiratory syncytial virus (BRSV) is a significant cause of respiratory infection in calves, and is most severe in animals under one year of age. BRSV is also a significant factor in the development of bovine respiratory disease complex (BRDC), the leading cause of morbidity and mortality in feedlot cattle. Human respiratory syncytial virus (RSV) is closely related to BRSV and a leading cause of lower respiratory tract infection in infants and children worldwide. BRSV infection in calves shares striking similarities with RSV infection in human infants. To date, there have been few studies defining the role of γδ T cells in the immune response to BRSV or RSV infection in animals or humans, respectively. However, emerging evidence suggests that γδ T cells may play a critical role in the early recognition of infection and in shaping the development of the adaptive immune response through inflammatory chemokine and cytokine production. Further, while it is clear that γδ T cells accumulate in the lungs during BRSV and RSV infection, their role in protection vs. immunopathology remains unclear. This review will summarize what is currently known about the role of γδ T cells in the immune response to BRSV and BRDC in cattle, and where appropriate, draw parallels to the role of γδ T cells in the human response to RSV infection.

Naringenin potentiates anti-tumor immunity against oral cancer by inducing lymph node CD169-positive macrophage activation and cytotoxic T cell infiltration

Cancer immunology, immunotherapy : CII

2022 Jan 19

Kawaguchi, S;Kawahara, K;Fujiwara, Y;Ohnishi, K;Pan, C;Yano, H;Hirosue, A;Nagata, M;Hirayama, M;Sakata, J;Nakashima, H;Arita, H;Yamana, K;Gohara, S;Nagao, Y;Maeshiro, M;Iwamoto, A;Hirayama, M;Yoshida, R;Komohara, Y;Nakayama, H;
PMID: 35044489 | DOI: 10.1007/s00262-022-03149-w

The CD169+ macrophages in lymph nodes are implicated in cytotoxic T lymphocyte (CTL) activation and are associated with improved prognosis in several malignancies. Here, we investigated the significance of CD169+ macrophages in oral squamous cell carcinoma (OSCC). Further, we tested the anti-tumor effects of naringenin, which has been previously shown to activate CD169+ macrophages, in a murine OSCC model. Immunohistochemical analysis for CD169 and CD8 was performed on lymph node and primary tumor specimens from 89 patients with OSCC. We also evaluated the effects of naringenin on two murine OSCC models. Increased CD169+ macrophage counts in the regional lymph nodes correlated with favorable prognosis and CD8+ cell counts within tumor sites. Additionally, naringenin suppressed tumor growth in two murine OSCC models. The mRNA levels of CD169, interleukin (IL)-12, and C-X-C motif chemokine ligand 10 (CXCL10) in lymph nodes and CTL infiltration in tumors significantly increased following naringenin administration in tumor-bearing mice. These results suggest that CD169+ macrophages in lymph nodes are involved in T cell-mediated anti-tumor immunity and could be a prognostic marker for patients with OSCC. Moreover, naringenin is a new potential agent for CD169+ macrophage activation in OSCC treatment.
Anti-PD-1 treatment impairs opioid antinociception in rodents and nonhuman primates

Sci Transl Med

2020 Feb 19

Wang Z1, Jiang C1, He Q1, Matsuda M1, Han Q1, Wang K1, Bang S1, Ding H2, Ko MC2,3, Ji RR4,5,6.
PMID: 32075945 | DOI: 10.1126/scitranslmed.aaw6471

Emerging immunotherapies with monoclonal antibodies against programmed cell death protein-1 (PD-1) have shown success in treating cancers. However, PD-1 signaling in neurons is largely unknown. We recently reported that dorsal root ganglion (DRG) primary sensory neurons express PD-1 and activation of PD-1 inhibits neuronal excitability and pain. Opioids are mainstay treatments for cancer pain, and morphine produces antinociception via mu opioid receptor (MOR). Here, we report that morphine antinociception and MOR signaling require neuronal PD-1. Morphine-induced antinociception after systemic or intrathecal injection was compromised in Pd1 -/- mice. Morphine antinociception was also diminished in wild-type mice after intravenous or intrathecal administration of nivolumab, a clinically used anti-PD-1 monoclonal antibody. In mouse models of inflammatory, neuropathic, and cancer pain, spinal morphine antinociception was compromised in Pd1 -/- mice. MOR and PD-1 are coexpressed in sensory neurons and their axons in mouse and human DRG tissues. Morphine produced antinociception by (i) suppressing calcium currents in DRG neurons, (ii) suppressing excitatory synaptic transmission, and (iii) inducing outward currents in spinal cord neurons; all of these actions were impaired by PD-1 blockade in mice. Loss of PD-1 also enhanced opioid-induced hyperalgesia and tolerance and potentiates opioid-induced microgliosis and long-term potentiation in the spinal cord in mice. Last, intrathecal infusion of nivolumab inhibited intrathecal morphine-induced antinociception in nonhuman primates. Our findings demonstrate that PD-1 regulates opioid receptor signaling in nociceptive neurons, leading to altered opioid-induced antinociception in rodents and nonhuman primates
Low nephron endowment increases susceptibility to renal stress and chronic kidney disease

JCI insight

2023 Jan 10

Good, PI;Li, L;Hurst, HA;Serrano-Herrera, IM;Xu, K;Rao, M;Bateman, DA;Al-Awqati, Q;D'Agati, VD;Costantini, F;Lin, F;
PMID: 36626229 | DOI: 10.1172/jci.insight.161316

Preterm birth results in low nephron endowment and increased risk of acute kidney injury (AKI) and chronic kidney disease (CKD). To understand the pathogenesis of AKI and CKD in preterm humans, we generated novel mouse models with a 30-70% reduction in nephron number by inhibiting or deleting Ret tyrosine kinase in the developing ureteric bud. These mice developed glomerular and tubular hypertrophy followed by the transition to CKD, recapitulating the renal pathological changes seen in humans born preterm. We injected neonatal mice with gentamicin, a ubiquitous nephrotoxic exposure in preterm infants, and detected more severe proximal tubular injury in mice with low nephron number compared to controls with normal nephron number. Mice with low nephron number have reduced proliferative repair with more rapid development of CKD. Furthermore, mice had more profound inflammation with highly elevated levels of MCP-1 and CXCL10, produced in part by damaged proximal tubules. Our study directly links low nephron endowment with postnatal renal hypertrophy, which in this model is maladaptive and results in CKD. Underdeveloped kidneys are more susceptible to gentamicin-induced AKI, suggesting that AKI in the setting of low nephron number is more severe and further increases the risk of CKD in this vulnerable population.
Endogenous µ-opioid receptor activity in the lateral and capsular subdivisions of the right central nucleus of the amygdala prevents chronic postoperative pain

Journal of neuroscience research

2021 May 06

Cooper, AH;Hedden, NS;Corder, G;Lamerand, SR;Donahue, RR;Morales-Medina, JC;Selan, L;Prasoon, P;Taylor, BK;
PMID: 33957003 | DOI: 10.1002/jnr.24846

Tissue injury induces a long-lasting latent sensitization (LS) of spinal nociceptive signaling that is kept in remission by an opposing µ-opioid receptor (MOR) constitutive activity. To test the hypothesis that supraspinal sites become engaged, we induced hindpaw inflammation, waited 3 weeks for mechanical hypersensitivity to resolve, and then injected the opioid receptor inhibitors naltrexone, CTOP or β-funaltrexamine subcutaneously, and/or into the cerebral ventricles. Intracerebroventricular injection of each inhibitor reinstated hypersensitivity and produced somatic signs of withdrawal, indicative of LS and endogenous opioid dependence, respectively. In naïve or sham controls, systemic naloxone (3 mg/kg) produced conditioned place aversion, and systemic naltrexone (3 mg/kg) increased Fos expression in the central nucleus of the amygdala (CeA). In LS animals tested 3 weeks after plantar incision, systemic naltrexone reinstated mechanical hypersensitivity and produced an even greater increase in Fos than in sham controls, particularly in the capsular subdivision of the right CeA. One third of Fos+ profiles co-expressed protein kinase C delta (PKCδ), and 35% of PKCδ neurons co-expressed tdTomato+ in Oprm1Cre ::tdTomato transgenic mice. CeA microinjection of naltrexone (1 µg) reinstated mechanical hypersensitivity only in male mice and did not produce signs of somatic withdrawal. Intra-CeA injection of the MOR-selective inhibitor CTAP (300 ng) reinstated hypersensitivity in both male and female mice. We conclude that MORs in the capsular subdivision of the right CeA prevent the transition from acute to chronic postoperative pain.
Sleep loss disrupts Arc expression in dentate gyrus neurons

Neurobiol Learn Mem.

2018 Apr 07

Delorme JE, Kodoth V, Aton SJ.
PMID: 29635031 | DOI: 10.1016/j.nlm.2018.04.006

Sleep loss affects many aspects of cognition, and memory consolidation processes occurring in the hippocampus seem particularly vulnerable to sleep loss. The immediate-early gene Arc plays an essential role in both synaptic plasticity and memory formation, and its expression is altered by sleep. Here, using a variety of techniques, we have characterized the effects of brief (3-h) periods of sleep vs. sleep deprivation (SD) on the expression of Arc mRNA and Arc protein in the mouse hippocampus and cortex. By comparing the relative abundance of mature Arc mRNA with unspliced pre-mRNA, we see evidence that during SD, increases in Arc across the cortex, but not hippocampus, reflect de novo transcription. Arc increases in the hippocampus during SD are not accompanied by changes in pre-mRNA levels, suggesting that increases in mRNA stability, not transcription, drives this change. Using in situ hybridization (together with behavioral observation to quantify sleep amounts), we find that in the dorsal hippocampus, SD minimally affects Arc mRNA expression, and decreases the number of dentate gyrus (DG) granule cells expressing Arc. This is in contrast to neighboring cortical areas, which show large increases in neuronal Arc expression after SD. Using immunohistochemistry, we find that Arc protein expression is also differentially affected in the cortex and DG with SD - while larger numbers of cortical neurons are Arc+, fewer DG granule cells are Arc+, relative to the same regions in sleeping mice. These data suggest that with regard to expression of plasticity-regulating genes, sleep (and SD) can have differential effects in hippocampal and cortical areas. This may provide a clue regarding the susceptibility of performance on hippocampus-dependent tasks to deficits following even brief periods of sleep loss.

Spatial and temporal heterogeneity in the lineage progression of fine oligodendrocyte subtypes

BMC biology

2022 May 25

Hilscher, MM;Langseth, CM;Kukanja, P;Yokota, C;Nilsson, M;Castelo-Branco, G;
PMID: 35610641 | DOI: 10.1186/s12915-022-01325-z

Oligodendrocytes are glial cells that support and insulate axons in the central nervous system through the production of myelin. Oligodendrocytes arise throughout embryonic and early postnatal development from oligodendrocyte precursor cells (OPCs), and recent work demonstrated that they are a transcriptional heterogeneous cell population, but the regional and functional implications of this heterogeneity are less clear. Here, we apply in situ sequencing (ISS) to simultaneously probe the expression of 124 marker genes of distinct oligodendrocyte populations, providing comprehensive maps of the corpus callosum, cingulate, motor, and somatosensory cortex in the brain, as well as gray matter (GM) and white matter (WM) regions in the spinal cord, at postnatal (P10), juvenile (P20), and young adult (P60) stages. We systematically compare the abundances of these populations and investigate the neighboring preference of distinct oligodendrocyte populations.We observed that oligodendrocyte lineage progression is more advanced in the juvenile spinal cord compared to the brain, corroborating with previous studies. We found myelination still ongoing in the adult corpus callosum while it was more advanced in the cortex. Interestingly, we also observed a lateral-to-medial gradient of oligodendrocyte lineage progression in the juvenile cortex, which could be linked to arealization, as well as a deep-to-superficial gradient with mature oligodendrocytes preferentially accumulating in the deeper layers of the cortex. The ISS experiments also exposed differences in abundances and population dynamics over time between GM and WM regions in the brain and spinal cord, indicating regional differences within GM and WM, and we found that neighboring preferences of some oligodendroglia populations are altered from the juvenile to the adult CNS.Overall, our ISS experiments reveal spatial heterogeneity of oligodendrocyte lineage progression in the brain and spinal cord and uncover differences in the timing of oligodendrocyte differentiation and myelination, which could be relevant to further investigate functional heterogeneity of oligodendroglia, especially in the context of injury or disease.
Connexin 43 Controls the Astrocyte Immunoregulatory Phenotype

Brain Sci.

2018 Mar 22

Boulay AC, Gilbert A, Oliveira Moreira V, Blugeon C, Perrin S, Pouch J, Le Crom S, Ducos B, Cohen-Salmon M.
PMID: 29565275 | DOI: 10.3390/brainsci8040050

Astrocytes are the most abundant glial cells of the central nervous system and have recently been recognized as crucial in the regulation of brain immunity. In most neuropathological conditions, astrocytes are prone to a radical phenotypical change called reactivity, which plays a key role in astrocyte contribution to neuroinflammation. However, how astrocytes regulate brain immunity in healthy conditions is an understudied question. One of the astroglial molecule involved in these regulations might be Connexin 43 (Cx43), a gap junction protein highly enriched in astrocyte perivascular endfeet-terminated processes forming the glia limitans. Indeed, Cx43 deletion in astrocytes (Cx43KO) promotes a continuous immune recruitment and an autoimmune response against an astrocyte protein, without inducing any brain lesion. To investigate the molecular basis of this unique immune response, we characterized the polysomal transcriptome of hippocampal astrocytes deleted for Cx43. Our results demonstrate that, in the absence of Cx43, astrocytes adopt an atypical reactive status with no change in most canonical astrogliosis markers, but with an upregulation of molecules promoting immune recruitment, complement activation as well as anti-inflammatory processes. Intriguingly, while several of these upregulated transcriptional events suggested an activation of the γ-interferon pathway, no increase in this cytokine or activation of related signaling pathways were found in Cx43KO. Finally, deletion of astroglial Cx43 was associated with the upregulation of several angiogenic factors, consistent with an increase in microvascular density in Cx43KO brains. Collectively, these results strongly suggest that Cx43 controls immunoregulatory and angiogenic properties of astrocytes.

Hippocampal µ-opioid receptors on GABAergic neurons mediate stress-induced impairment of memory retrieval

Mol Psychiatry

2019 May 29

Shi MM, Fan KM, Qiao YN, Xu JH, Qiu LJ, Li X, Liu Y, Qian ZQ, Wei CL, Han J, Fan J, Tian YF, Ren W, Liu ZQ.
PMID: 31142818 | DOI: 10.1038/s41380-019-0435-z

Stressful life events induce abnormalities in emotional and cognitive behaviour. The endogenous opioid system plays an essential role in stress adaptation and coping strategies. In particular, the µ-opioid receptor (μR), one of the major opioid receptors, strongly influences memory processing in that alterations in μR signalling are associated with various neuropsychiatric disorders. However, it remains unclear whether μR signalling contributes to memory impairments induced by acute stress. Here, we utilized pharmacological methods and cell-type-selective/non-cell-type-selective μR depletion approaches combined with behavioural tests, biochemical analyses, and in vitro electrophysiological recordings to investigate the role of hippocampal μR signalling in memory-retrieval impairment induced by acute elevated platform (EP) stress in mice. Biochemical and molecular analyses revealed that hippocampal μRs were significantly activated during acute stress. Blockage of hippocampal μRs, non-selective deletion of μRs or selective deletion of μRs on GABAergic neurons (μRGABA) reversed EP-stress-induced impairment of memory retrieval, with no effect on the elevation of serum corticosterone after stress. Electrophysiological results demonstrated that stress depressed hippocampal GABAergic synaptic transmission to CA1 pyramidal neurons, thereby leading to excitation/inhibition (E/I) imbalance in a μRGABA-dependent manner. Pharmaceutically enhancing hippocampal GABAAreceptor-mediated inhibitory currents in stressed mice restored their memory retrieval, whereas inhibiting those currents in the unstressed mice mimicked the stress-induced impairment of memory retrieval. Our findings reveal a novel pathway in which endogenous opioids recruited by acute stress predominantly activate μRGABA to depress GABAergic inhibitory effects on CA1 pyramidal neurons, which subsequently alters the E/I balance in the hippocampus and results in impairment of memory retrieval.

An increase in VGF expression through a rapid, transcription-independent, autofeedback mechanism improves cognitive function

Translational psychiatry

2021 Jul 08

Lin, WJ;Zhao, Y;Li, Z;Zheng, S;Zou, JL;Warren, NA;Bali, P;Wu, J;Xing, M;Jiang, C;Tang, Y;Salton, SR;Ye, X;
PMID: 34238925 | DOI: 10.1038/s41398-021-01489-2

The release of neuropeptides from dense core vesicles (DCVs) modulates neuronal activity and plays a critical role in cognitive function and emotion. The granin family is considered a master regulator of DCV biogenesis and the release of DCV cargo molecules. The expression of the VGF protein (nonacronymic), a secreted neuropeptide precursor that also belongs to the extended granin family, has been previously shown to be induced in the brain by hippocampus-dependent learning, and its downregulation is mechanistically linked to neurodegenerative diseases such as Alzheimer's disease and other mood disorders. Currently, whether changes in translational efficiency of Vgf and other granin mRNAs may be associated and regulated with learning associated neural activity remains largely unknown. Here, we show that either contextual fear memory training or the administration of TLQP-62, a peptide derived from the C-terminal region of the VGF precursor, acutely increases the translation of VGF and other granin proteins, such as CgB and Scg2, via an mTOR-dependent signaling pathway in the absence of measurable increases in mRNA expression. Luciferase-based reporter assays confirmed that the 3'-untranslated region (3'UTR) of the Vgf mRNA represses VGF translation. Consistently, the truncation of the endogenous Vgf mRNA 3'UTR results in substantial increases in VGF protein expression both in cultured primary neurons and in brain tissues from knock in mice expressing a 3'UTR-truncation mutant encoded by the modified Vgf gene. Importantly, Vgf 3'UTR-truncated mice exhibit enhanced memory performance and reduced anxiety- and depression-like behaviors. Our results therefore reveal a rapid, transcription-independent induction of VGF and other granin proteins after learning that are triggered by the VGF-derived peptide TLQP-62. Our findings suggest that the rapid, positive feedforward increase in the synthesis of granin family proteins might be a general mechanism to replenish DCV cargo molecules that have been released in response to neuronal activation and is crucial for memory function and mood stability.
Y-Chromosome Gene, Uty, Protects Against Pulmonary Hypertension by Reducing Proinflammatory Chemokines

American journal of respiratory and critical care medicine

2022 May 03

Cunningham, CM;Li, M;Ruffenach, G;Doshi, M;Aryan, L;Hong, J;Park, J;Hrncir, H;Medzikovic, L;Umar, S;Arnold, AP;Eghbali, M;
PMID: 35504005 | DOI: 10.1164/rccm.202110-2309OC

Idiopathic pulmonary arterial hypertension (PAH) is a terminal pulmonary vascular disease characterized by increased pressure, right ventricular failure and death. PAH exhibits a striking sex bias and is up to 4x more prevalent in females. Understanding the molecular basis behind sex differences could help uncover novel therapies.We previously discovered the Y-Chromosome is protective against hypoxia-induced experimental PH which may contribute to sex differences in PAH. Here, we identify the gene responsible for Y-Chromosome protection, investigate key downstream autosomal genes, and demonstrate a novel preclinical therapy. Methods, Measurements and Main Results: To test the effect of Y-Chromosome genes on PH development, we knocked down each Y-Chromosome gene expressed in the lung via intratracheal instillation of siRNA in gonadectomized male mice exposed to hypoxia. Knockdown of Y-Chromosome gene Uty resulted in more severe PH measured by increased right ventricular pressure and decreased pulmonary artery acceleration time. RNA-sequencing revealed an increase in proinflammatory chemokines Cxcl9 and Cxcl10 as a result of Uty knockdown. We found CXCL9 and CXCL10 significantly upregulated in human PAH lungs, with more robust upregulation in PAH females. Treatment of human pulmonary artery endothelial cells with CXCL9 and CXCL10 triggered apoptosis. Inhibition of CXCL9 and CXCL10 expression in male Uty knockout mice and CXCL9 and CXCL10 activity in female rats significantly reduced PH severity.Uty, is protective against PH. Reduction of Uty expression results in increased expression of proinflammatory chemokines CXCL9 and CXCL10 which trigger endothelial cell death and PH. Inhibition of Cxcl9 and Cxcl10 rescues PH development in multiple experimental models.
Endogenous opioid signaling in the retina modulates sleep/wake activity in mice

Neurobiology of Sleep and Circadian Rhythms

2022 Jun 01

Berezin, C;Bergum, N;Luchini, K;Curdts, S;Korkis, C;Vigh, J;
| DOI: 10.1016/j.nbscr.2022.100078

Circadian sleep/wake rhythms are synchronized to environmental light/dark cycles in a process known as photoentrainment. We have previously shown that activation of β-endorphin-preferring μ-opioid receptors (MORs) inhibits the light-evoked firing of intrinsically photosensitive retinal ganglion cells (ipRGCs), the sole conduits of photoentrainment. Although we have shown that β-endorphin is expressed in the adult mouse retina, the conditions under which β-endorphin is expressed are unknown. Moreover, it is unclear whether endogenous activation of the MORs expressed by ipRGCs modulates the photoentrainment of sleep/wake cycles. To elucidate this, we first measured the mRNA expression of β-endorphin's precursor, proopiomelanocortin (POMC), at various times of day by quantitative reverse-transcription PCR. POMC mRNA appears to have cyclic expression in the mouse retina. We then studied β-endorphin expression with immunohistochemistry and found that retinal β-endorphin is more highly expressed in the dark/at night. Finally, we used telemetry to measure activity, EEG and EMG in freely moving animals to compare sleep/wake cycles in wild-type and transgenic mice in which only ipRGCs lack functional MORs. Results from these experiments suggest that the MORs expressed by ipRGCs contribute to the induction and maintenance of activity in the dark phase in nocturnal mice, via the promotion of wakefulness and inhibition of slow-wave sleep. Together, these data suggest that endogenous β-endorphin activates MORs expressed by ipRGCs to modulate sleep/wake activity via the photoentrainment pathway.

Pages

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?