Contact Us / Request a Quote Download Manuals
Advanced Cell Diagnostics Advanced Cell Diagnostics

Search form

Please sign in
  • Log In
  • Register
  • How to Order
  • What to Buy
0 My Cart
X

You have no items in your shopping cart.

Menu
X
  • Products +
    RNAscope™/BaseScope™/ miRNAscope™
    +
    • Assay Selection Guide
    Target Probes
    +
    • All About Probes
    • Catalog Probes
    • Probe Sets
    • New Probe Request
    Manual Assays
    +
    RNAscope™ Chromogenic
    • Overview
    • RNAscope™ 2.5 HD Assay-Brown
    • RNAscope™ 2.5 HD Assay-Red
    • RNAscope™ 2.5 HD Duplex Assay
    RNAscope™ Multiplex Fluorescent
    • Overview
    • RNAscope™ HiPlex v2 Assay
    • RNAscope™ Multiplex Fluorescent V2
    BaseScope™
    • Overview
    • BaseScope™ Assay Red
    • BaseScope™ Duplex Assay
    miRNAscope™
    • Overview
    • miRNAscope™ Assay red
    • RNAscope™ Plus smRNA-RNA Assay
    DNAscope™
    • Overview
    • DNAscope™ Duplex Assay
    Automated Assays
    +
    For Lunaphore COMET™
    • RNAscope™ HiPlex Pro for COMET™
    For Leica systems
    • Overview
    • RNAscope™ 2.5 LS Assay-Brown
    • RNAscope™ 2.5 LS Assay-Red
    • RNAscope™ 2.5 LS Duplex Assay
    • RNAscope™ Multiomic LS Assay
    • RNAscope™ 2.5 LS Fluorescent Multiplex Assay
    • RNAscope™ 2.5 LSx Reagent Kit-BROWN
    • RNAscope™ 2.5 LSx Reagent Kit-RED
    • BaseScope™ LS Reagent Kit – RED
    • miRNAscope LS Reagent Kit Red
    • RNAscope™ Plus smRNA-RNA LS Assay
    Roche DISCOVERY ULTRA system
    • Overview
    • RNAscope™ VS Universal HRP
    • RNAscope™ VS Universal AP
    • RNAscope™ VS Duplex Assay
    • BaseScope™ VS Reagent Kit – RED
    RNA-Protein Co-Detection Assay
    +
    • RNAscope HiPlex-IMC™ Co-Detection
    • Integrated Codetection Assay
    • Sequential RNA Protein Detection
    Software
    +
    • Overview
    • Aperio RNA ISH Algorithm
    • HALO® image analysis platform
    Controls & Accessories
    +
    • RNAscope™
    • BaseScope™
    • miRNAscope™
    • Accessories
    How to Order
    +
    • Ordering Instructions
    • What to Buy
  • Services +
    Professional Assay Services
    +
    • Our Services
    • Multiomic Services
    • Biomarker Assay Development
    • Cell & Gene Therapy Services
    • Clinical Assay Development
    • Tissue Bank & Sample Procurement
    • Image Analysis
    Benefits
    +
    • Your Benefits
    • Certified Providers
    How to Order
    +
    • Ordering Process
    • Contact Services
  • Areas of Research +
    Most Popular
    +
    • COVID-19 Coronavirus
    • Single Cell Analysis
    • Whole-Mount
    • Anatomic Pathology Panels
    • Neuroscience
    • Inflammation
    • Gene Therapy/AAV
    • Stem Cell
    • Immuno-oncology
    • Liver Research
    • Cardiovascular & Skeletal Muscle Research
    Cell & Gene Therapy
    +
    • Gene Therapy
    • Gene Therapy/AAV
    • siRNA/ASO
    • Cell Therapy
    Cancer
    +
    • Breast Cancer
    • EGFRvIII Splice Variant
    • HPV Related Cancer
    • Immuno-oncology
    • Lung Cancer
    • PDx
    • Prostate Cancer
    • Point Mutation
    • CDR3 for TCR
    Viral
    +
    • COVID-19 Coronavirus
    • HIV & SIV
    • Infectious Disease
    • Zika Virus
    Pathways
    +
    • AKT
    • JAK STAT
    • WNT B-Catenin
    Neuroscience
    +
    Neuroscience
    • Neural Development
    • Neuronal Cell Types
    • Learning and Memory
    • G-protein-coupled Receptors & Ion Channels
    • Post-mortem Brain Tissue
    Other
    +
    • Circular RNA
    • Gene Fusions
    • HT Transcript Validation
    • Long Non-coding RNA
    • RNAseq Validation
    • Single Cell Analysis
    • Splice Variant
    • miRNA
    RNA & Protein
    +
    • Antibody Challenges
    • Dual ISH + IHC Methods
    • No Antibodies
    • RNA & Protein Analysis
    Customer Innovations
    +
    • Dual RNA+DNA ISH
    • Very old FFPE ISH
    • Wholemount ISH
    Animal Models
    +
    • Any Species
    • Mouse Model
    • Preclincal Safety
  • Technology +
    Overview
    +
    • How it Works
    • Data Image Gallery
    • Technology Video
    • Webinars
    RNA Detection
    +
    • Why RNA?
    • RNA ISH and IHC
    Pretreatment Options
    +
    • RNAscope™ Pretreatment
    • PretreatPro™
    Spotlights
    +
    • Researchers Spotlights
    • RNA & DNA
    • WISH
    • FFPE
    • Testimonials
    Publications, Guides & Posters
    +
    • Search publications
    • RNAscope™ Reference Guide
    • RNAscope™ Data Analysis Guide
    • Download RNAscope™ Posters
  • Support +
    Overview
    +
    • Get Started
    • How to Order
    • Distributors
    • Contact Support
    Troubleshooting
    +
    • Troubleshooting Guide
    • FAQs
    • User Manuals, SDS and Product Inserts
    • Documents and Downloads
    Imaging Resource
    +
    • Image Analysis
    • Image Registration Software
    • QuPath
    • HALO® image analysis platform
    Learn More
    +
    • Webinars
    • Training Videos
  • Partners +
    Partners
    +
    • Overview
    Partners Directory
    +
    Automation Partners
    • Leica Biosystem
    • Roche Diagnostics
    Workflow Partners
    • NanoString
    Software Partners
    • indica labs
    Become a Partner
    +
    • Learn How
  • Diagnostics +
    Diagnostics
    +
    • Diagnostics
    • Literature
    • Diagnostics ASR Probes
    • Diagnostics CE-IVD Probes
    • Diagnostics CE-IVD Detection
    • Companion Diagnostics
  • Image Calendar +
    Image Calendar
    +
    • Image Contest
    • Data Image Gallery
Search

Probes for INS

ACD can configure probes for the various manual and automated assays for INS for RNAscope Assay, or for Basescope Assay compatible for your species of interest.

  • Probes for INS (0)
  • Kits & Accessories (0)
  • Support & Documents (0)
  • Publications (199)
  • Image gallery (0)
Refine Probe List

Content for comparison

Gene

  • TBD (1413) Apply TBD filter
  • (-) Remove Lgr5 filter Lgr5 (151)
  • SARS-CoV-2 (136) Apply SARS-CoV-2 filter
  • Gad1 (90) Apply Gad1 filter
  • vGlut2 (80) Apply vGlut2 filter
  • HPV E6/E7 (78) Apply HPV E6/E7 filter
  • Slc17a6 (77) Apply Slc17a6 filter
  • Axin2 (74) Apply Axin2 filter
  • SLC32A1 (74) Apply SLC32A1 filter
  • FOS (73) Apply FOS filter
  • Sst (65) Apply Sst filter
  • TH (63) Apply TH filter
  • VGAT (58) Apply VGAT filter
  • Gad2 (54) Apply Gad2 filter
  • tdTomato (54) Apply tdTomato filter
  • DRD2 (53) Apply DRD2 filter
  • Slc17a7 (52) Apply Slc17a7 filter
  • GLI1 (51) Apply GLI1 filter
  • PVALB (47) Apply PVALB filter
  • egfp (46) Apply egfp filter
  • ZIKV (46) Apply ZIKV filter
  • DRD1 (42) Apply DRD1 filter
  • GFAP (39) Apply GFAP filter
  • COL1A1 (38) Apply COL1A1 filter
  • Crh (37) Apply Crh filter
  • Chat (37) Apply Chat filter
  • V-nCoV2019-S (37) Apply V-nCoV2019-S filter
  • Pomc (34) Apply Pomc filter
  • PDGFRA (33) Apply PDGFRA filter
  • Il-6 (33) Apply Il-6 filter
  • Cre (33) Apply Cre filter
  • AGRP (32) Apply AGRP filter
  • PECAM1 (32) Apply PECAM1 filter
  • Npy (32) Apply Npy filter
  • Wnt5a (31) Apply Wnt5a filter
  • (-) Remove CXCL10 filter CXCL10 (31)
  • GLP1R (31) Apply GLP1R filter
  • Sox9 (29) Apply Sox9 filter
  • CD68 (28) Apply CD68 filter
  • Penk (28) Apply Penk filter
  • PD-L1 (28) Apply PD-L1 filter
  • ACTA2 (27) Apply ACTA2 filter
  • SHH (27) Apply SHH filter
  • VGluT1 (27) Apply VGluT1 filter
  • OLFM4 (26) Apply OLFM4 filter
  • GFP (26) Apply GFP filter
  • Rbfox3 (25) Apply Rbfox3 filter
  • MALAT1 (24) Apply MALAT1 filter
  • SOX2 (24) Apply SOX2 filter
  • Ccl2 (24) Apply Ccl2 filter

Product

  • RNAscope Multiplex Fluorescent Assay (29) Apply RNAscope Multiplex Fluorescent Assay filter
  • RNAscope 2.5 HD Red assay (28) Apply RNAscope 2.5 HD Red assay filter
  • RNAscope 2.0 Assay (24) Apply RNAscope 2.0 Assay filter
  • RNAscope (17) Apply RNAscope filter
  • RNAscope Fluorescent Multiplex Assay (17) Apply RNAscope Fluorescent Multiplex Assay filter
  • RNAscope 2.5 HD Brown Assay (14) Apply RNAscope 2.5 HD Brown Assay filter
  • RNAscope 2.5 LS Assay (13) Apply RNAscope 2.5 LS Assay filter
  • RNAscope 2.5 HD Duplex (8) Apply RNAscope 2.5 HD Duplex filter
  • RNAscope 2.5 HD Reagent Kit - BROWN (7) Apply RNAscope 2.5 HD Reagent Kit - BROWN filter
  • RNAscope 2.0 HD Assay - Chromogenic (1) Apply RNAscope 2.0 HD Assay - Chromogenic filter
  • RNAscope 2.5 HD duplex reagent kit (1) Apply RNAscope 2.5 HD duplex reagent kit filter
  • RNAscope HiPlex v2 assay (1) Apply RNAscope HiPlex v2 assay filter
  • RNAscope Multiplex Fluorescent Assay v2 (1) Apply RNAscope Multiplex Fluorescent Assay v2 filter

Research area

  • Cancer (71) Apply Cancer filter
  • Stem Cells (59) Apply Stem Cells filter
  • Development (23) Apply Development filter
  • Neuroscience (17) Apply Neuroscience filter
  • Inflammation (15) Apply Inflammation filter
  • Stem cell (15) Apply Stem cell filter
  • Other (12) Apply Other filter
  • Infectious Disease (6) Apply Infectious Disease filter
  • Developmental (3) Apply Developmental filter
  • Cancer Stem Cells (2) Apply Cancer Stem Cells filter
  • Infectious (2) Apply Infectious filter
  • Liver (2) Apply Liver filter
  • Pulmonology (2) Apply Pulmonology filter
  • Regeneration (2) Apply Regeneration filter
  • Alzheimer's Disease (1) Apply Alzheimer's Disease filter
  • Chronic Kidney Disease (1) Apply Chronic Kidney Disease filter
  • Colitis (1) Apply Colitis filter
  • Covid (1) Apply Covid filter
  • Diet (1) Apply Diet filter
  • Gastro (1) Apply Gastro filter
  • Gut Microbiota (1) Apply Gut Microbiota filter
  • Human intestinal organoids (1) Apply Human intestinal organoids filter
  • Immuno (1) Apply Immuno filter
  • Infectious Disease: Ebola Virus (1) Apply Infectious Disease: Ebola Virus filter
  • Inflammatory Bowel Disease (1) Apply Inflammatory Bowel Disease filter
  • Inflammtion (1) Apply Inflammtion filter
  • Injury (1) Apply Injury filter
  • Keratin (1) Apply Keratin filter
  • Kidney (1) Apply Kidney filter
  • lncRNA (1) Apply lncRNA filter
  • Macular Degeneration (1) Apply Macular Degeneration filter
  • Metabolism (1) Apply Metabolism filter
  • Nerve Injury (1) Apply Nerve Injury filter
  • Neuropathic pain (1) Apply Neuropathic pain filter
  • Organoid (1) Apply Organoid filter
  • Organoids (1) Apply Organoids filter
  • other: Aging (1) Apply other: Aging filter
  • Other: Hair Growth (1) Apply Other: Hair Growth filter
  • Other: Kidney (1) Apply Other: Kidney filter
  • Other: Prostate (1) Apply Other: Prostate filter
  • Other: Single-cell transcriptomics (1) Apply Other: Single-cell transcriptomics filter
  • Other: Sodium intake (1) Apply Other: Sodium intake filter
  • Pain (1) Apply Pain filter
  • Radiation enteritis (1) Apply Radiation enteritis filter
  • Radiotherapy (1) Apply Radiotherapy filter
  • Signalling (1) Apply Signalling filter
  • Singlecell (1) Apply Singlecell filter
  • Skin (1) Apply Skin filter
  • T Cells (1) Apply T Cells filter
  • Tumourigenesis (1) Apply Tumourigenesis filter

Category

  • Publications (199) Apply Publications filter
The Functional Immunophenotypic Profile of Kikuchi Fujimoto Disease: Comparison with Systemic Lupus Erythematosus

SSRN Electronic Journal

2022 May 28

Galera, P;Alejo, J;Valadez, R;Davies-Hill, T;Menon, M;Hasni, S;Jaffe, E;Pittaluga, S;
| DOI: 10.2139/ssrn.4115599

Kikuchi Fujimoto Disease (KFD) is a rare form of localized lymphadenopathy, commonly affecting young Asian females with a self-limited course. The immunopathogenic mechanisms underlying KFD are still not well understood. KFD and systemic lupus erythematosus (SLE) share several histologic and clinical features, thus posing a diagnostic challenge. The aim of this study was to elucidate the in-situ distribution of immune cells and the cytokine/chemokine milieu of KFD utilizing immunohistochemistry to identify key cellular elements and RNAscope to assess cytokine and chemokine production. This study further compared the clinical, morphologic, and immunologic features of KFD to SLE.18 KFD, 16 SLE and 3 reactive lymph nodes were included. In contrast to KFD and reactive lymph nodes, SLE patients frequently exhibited generalized lymphadenopathy and had significantly higher frequency of systemic manifestations. Both KFD and SLE lymph nodes revealed overlapping morphologic findings with few distinguishing features namely the presence of capsular fibrosis and plasmacytosis in SLE and predominance of CD8-positive T cells in KFD.RNAscope studies in the KFD cohort revealed significantly higher amounts of interferon γ (IFN-γ), CXCL9 and CXCL10 in comparison to the SLE and reactive lymph nodes. These findings suggest a T-helper cell 1 (Th1) response, driven by IFN-γ and IFN-γ induced CXCL9 and CXCL10, is pivotal in the pathogenesis of KFD  and is less evident in lymph nodes from SLE patients. Distinguishing histological features between KFD and SLE are subtle. Studying the cytokine/chemokine environment provides valuable insight into the pathophysiology of KFD. In addition, assessing the production of these cytokines/chemokines may provide further diagnostic help in differentiating KFD from SLE.
A dual role for hepatocyte-intrinsic canonical NF-?B signaling in virus control.

J Hepatol

2020 Jan 15

Namineni S, O'Connor T, Faure-Dupuy S, Johansen P, Riedl T, Liu K, Xu H, Singh I, Shinde P, Li F, Pandyra A, Sharma P, Ringelhan M, Muschaweckh A, Borst K, Blank P, Lampl S, Durantel D, Farhat R, Weber A, Lenggenhager D, K�ndig TM, Staeheli P, Protzer U, Wohlleber D, Holzmann B, Binder M, Breuhahn K, Assmus LM, Nattermann J, Abdullah Z, Rolland M, Dejardin E, Lang PA, Lang KS, Karin M, Lucifora J, Kalinke U, Knolle PA, Heikenwalder M
PMID: 31954207 | DOI: 10.1016/j.jhep.2019.12.019

Hepatic innate immune control of viral infections has largely been attributed to Kupffer cells, the liver macrophages. However, also hepatocytes, the parenchymal cells of the liver, possess potent immunological functions in addition to their known metabolic functions. Owing to their abundance in the liver and known immunological functions, we aimed to investigate the direct anti-viral mechanisms employed by hepatocytes. METHODS: Using lymphocytic choriomeningitis virus (LCMV) as a model of liver infection, we first assessed the role of myeloid cells by depletion prior to infection. We investigated the role of hepatocyte-intrinsic innate immune signaling by infecting mice lacking canonical NF-?B signaling (IKK??Hep) specifically in hepatocytes. In addition, mice lacking hepatocyte-specific interferon-?/? signaling-(IFNAR?Hep), or interferon-?/? signaling in myeloid cells-(IFNAR?Myel) were infected. RESULTS: Here, we demonstrate that LCMV activates NF-?B signaling in hepatocytes. LCMV-triggered NF-?B activation in hepatocytes did not depend on Kupffer cells or TNFR1- but rather on TLR-signaling. LCMV-infected IKK??Hep livers displayed strongly elevated viral titers due to LCMV accumulation within hepatocytes, reduced interferon-stimulated gene (ISG) expression, delayed intrahepatic immune cell influx and delayed intrahepatic LCMV-specific CD8+ T-cell responses. Notably, viral clearance and ISG expression were also reduced in LCMV-infected primary hepatocytes lacking IKK?, demonstrating a hepatocyte-intrinsic effect. Similar to livers of IKK??Hep mice, enhanced hepatocytic LCMV accumulation was observed in livers of IFNAR?Hep, whereas IFNAR?Myel mice were able to control LCMV-infection. Hepatocytic NF-?B signaling was also required for efficient ISG induction in HDV-infected dHepaRG cells and interferon-?/?-mediated inhibition of HBV replication in vitro. CONCLUSIONS: Together, these data show that hepatocyte-intrinsic NF-?B is a vital amplifier of interferon-?/? signaling pivotal for early, strong ISG responses, influx of immune cells and hepatic viral clearance.
Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury.

Mol Neurodegener.

2018 Apr 04

Main BS, Villapol S, Sloley SS, Barton DJ, Parsadanian M, Agbaegbu C, Stefos K, McCann MS, Washington PM, Rodriguez OC, Burns MP.
PMID: 29618365 | DOI: 10.1186/s13024-018-0249-5

Abstract

BACKGROUND:

Traumatic Brain Injury (TBI) is a major cause of disability and mortality, to which there is currently no comprehensive treatment. Blood Brain Barrier (BBB) dysfunction is well documented in human TBI patients, yet the molecular mechanisms that underlie this neurovascular unit (NVU) pathology remains unclear. The apolipoprotein-E (apoE) protein has been implicated in controlling BBB integrity in an isoform dependent manner, via suppression of Cyclophilin A (CypA)-Matrix metallopeptidase-9 (MMP-9) signaling cascades, however the contribution of this pathway in TBI-induced BBB permeability is not fully investigated.

METHODS:

We exposed C57Bl/6 mice to controlled cortical impact and assessed NVU and BBB permeability responses up to 21 days post-injury. We pharmacologically probed the role of the CypA-MMP-9 pathway in BBB permeability after TBI using Cyclosporin A (CsA, 20 mg/kg). Finally, as the apoE4 protein is known to be functionally deficient compared to the apoE3 protein, we used humanized APOE mice as a clinically relevant model to study the role of apoE on BBB injury and repair after TBI.

RESULTS:

In C57Bl/6 mice there was an inverse relationship between soluble apoE and BBB permeability, such that damaged BBB stabilizes as apoE levels increase in the days following TBI. TBI mice displayed acute pericyte loss, increased MMP-9 production and activity, and reduced tight-junction expression. Treatment with the CypA antagonist CsA in C57Bl/6 mice attenuates MMP-9 responses and enhances BBB repair after injury, demonstrating that MMP-9 plays an important role in the timing of spontaneous BBB repair after TBI. We also show that apoe mRNA is present in both astrocytes and pericytes after TBI. We report that APOE3 and APOE4 mice have similar acute BBB responses to TBI, but APOE3 mice display faster spontaneous BBB repair than APOE4 mice. Isolated microvessel analysis reveals delayed pericyte repopulation, augmented and sustained MMP-9 expression at the NVU, and impaired stabilization of Zonula Occludens-1, Occludin and Claudin-5 expression at tight junctions in APOE4 mice after TBI compared to APOE3 mice.

CONCLUSIONS:

These data confirm apoE as an important modulator of spontaneous BBB stabilization following TBI, and highlights the APOE4 allele as a risk factor for poor outcome after TBI.

Profiling intestinal stem and proliferative cells in the small intestine of broiler chickens via in situ hybridization during the peri-hatch period

Poultry Science

2023 Jan 01

Cloft, S;Uni, Z;Wong, E;
| DOI: 10.1016/j.psj.2023.102495

Mature small intestines have crypts populated by stem cells which produce replacement cells to maintain the absorptive villus surface area. The embryonic crypt is rudimentary and cells along the villi are capable of proliferation. By 7 d post-hatch the crypts are developed and are the primary sites of proliferation. Research characterizing the proliferative expansion of the small intestine during the peri-hatch period is lacking. The objective of this study was to profile the changes of genes that are markers of stem cells and proliferation: Olfactomedin 4 (Olfm4), Leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5), and marker of proliferation Ki67 from embryonic day 17 to 7 d post-hatch using quantitative PCR and in situ hybridization (ISH). The expression of the stem cell marker genes differed. Olfm4 mRNA increased while Lgr5 mRNA decreased post-hatch. Ki67 mRNA decreased post-hatch in the duodenum and was generally the greatest in the ileum. The ISH was consistent with the quantitative PCR results. Olfm4 mRNA was only seen in the crypts and increased with morphological development of the crypts. In contrast Lgr5 mRNA was expressed in the crypt and the villi in the embryonic periods but became restricted to the intestinal crypt during the post-hatch period. Ki67 mRNA was expressed throughout the intestine pre-hatch, but then expression became restricted to the crypt and the center of the villi. The ontogeny of Olfm4, Lgr5 and Ki67 expressing cells show that proliferation in the peri-hatch intestine changes from along the entire villi to being restricted within the crypts.
LGR5 and CD133 as prognostic and predictive markers for fluoropyrimidine-based adjuvant chemotherapy in colorectal cancer

Acta Oncol.

2016 Jul 20

Stanisavljević L, Myklebust MP, Leh S, Dahl O.
PMID: 27435662 | DOI: 10.1080/0284186X.2016.1201215

Abstract

BACKGROUND:

Expression of leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) gene is associated with a metastatic phenotype and poor prognosis in colorectal cancer (CRC). CD133 expression is a putative cancer stem cell marker and a proposed prognostic marker in CRC, whereas the predictive value of CD133 expression for effect of adjuvant chemotherapy in CRC is unclear.

MATERIAL AND METHODS:

For the study of LGR5 mRNA and CD133 expression, tissue microarrays from 409 primary CRC stage II and III tumors, where patients had been randomized to adjuvant chemotherapy or surgery only, were available. LGR5 mRNA and CD133 expression were assessed by in situ hybridization (ISH) and immunohistochemistry (IHC), respectively. LGR5 mRNA and CD133 expression as prognostic and predictive markers were evaluated by univariate and multivariate analyses.

RESULTS:

For all CRC patients, positive LGR5 mRNA and CD133 expression were associated with classic adenocarcinoma histology type (p = 0.001 and p = 0.014, respectively). Positive LGR5 mRNA expression was also associated with smaller tumor diameter for CRC stage II (p = 0.005), but not for CRC stage III (p = 0.054). For CRC stage II, lack of LGR5 mRNA expression was associated with longer time to recurrence (TTR) in Kaplan-Meier (p = 0.045) and in multivariate Cox analysis (HR 0.27, 95% CI 0.08-0.95, p = 0.041). For colon cancer stage III patients, lack of CD133 expression was associated with better effect of adjuvant chemotherapy (p = 0.016) in Kaplan-Meier univariate analysis, but the interaction between CD133 and adjuvant chemotherapy was not statistically significant in multivariate analysis (HR 0.59, 95% CI 0.18-1.89, p = 0.374).

CONCLUSION:

LGR5 mRNA expression is a prognostic factor for CRC stage II patients, whereas the value of CD133 expression as prognostic and predictive biomarker is inconclusive.

Critical Role of the CXCL10/C-X-C Chemokine Receptor 3 Axis in Promoting Leukocyte Recruitment and Neuronal Injury during Traumatic Optic Neuropathy Induced by Optic Nerve Crush

The American Journal of Pathology

2016 Dec 10

Ha Y, Liu H, Zhu S, Yi P, Liu W, Nathanson J, Kayed R, Loucas B, Sun J, Frishman LJ, Motamedi M, Zhang W.
PMID: 27960090 | DOI: 10.1016/j.ajpath.2016.10.009

Traumatic optic neuropathy (TON) is an acute injury of the optic nerve secondary to trauma. Loss of retinal ganglion cells (RGCs) is a key pathological process in TON, yet mechanisms responsible for RGC death remain unclear. In a mouse model of TON, real-time noninvasive imaging revealed a dramatic increase in leukocyte rolling and adhesion in veins near the optic nerve (ON) head at 9 hours after ON injury. Although RGC dysfunction and loss were not detected at 24 hours after injury, massive leukocyte infiltration was observed in the superficial retina. These cells were identified as T cells, microglia/monocytes, and neutrophils but not B cells. CXCL10 is a chemokine that recruits leukocytes after binding to its receptor C-X-C chemokine receptor (CXCR) 3. The levels of CXCL10 and CXCR3 were markedly elevated in TON, and up-regulation of CXCL10 was mediated by STAT1/3. Deleting CXCR3 in leukocytes significantly reduced leukocyte recruitment, and prevented RGC death at 7 days after ON injury. Treatment with CXCR3 antagonist attenuated TON-induced RGC dysfunction and cell loss. In vitro co-culture of primary RGCs with leukocytes resulted in increased RGC apoptosis, which was exaggerated in the presence of CXCL10. These results indicate that leukocyte recruitment in retinal vessels near the ON head is an early event in TON and the CXCL10/CXCR3 axis has a critical role in recruiting leukocytes and inducing RGC death.

Immune cell and tumor cell-derived CXCL10 is indicative of immunotherapy response in metastatic melanoma

Journal for immunotherapy of cancer

2021 Sep 01

Reschke, R;Yu, J;Flood, B;Higgs, EF;Hatogai, K;Gajewski, TF;
PMID: 34593622 | DOI: 10.1136/jitc-2021-003521

A T cell-inflamed tumor microenvironment is characterized by the accumulation and local activation of CD8+ T cells and Bat3-lineage dendritic cells, which together are associated with clinical response to anti-programmed cell death protein 1 (anti-PD-1)-based immunotherapy. Preclinical models have demonstrated a crucial role for the chemokine CXCL10 in the recruitment of effector CD8+ T cells into the tumor site, and a chemokine gene signature is also seen in T cell-inflamed tumors from patients. However, the cellular source of CXCL10 in human solid tumors is not known. To identify the cellular source of CXCL10 we analyzed 22 pretreatment biopsy samples of melanoma metastases from patients who subsequently underwent checkpoint blockade immunotherapy. We stained for CD45+ and Sox10+ cells with multiparameter immunofluorescence staining, and RNA in situ hybridization technology was used in concert to identify CXCL10 transcripts. The results were correlated with the expression levels of CXCL10 transcripts from bulk RNA sequencing and the best overall response to immune checkpoint inhibition (anti-PD-1 alone or with anti-CTLA-4) in the same patients. We identified CD45+ cells as the major cellular source for CXCL10 in human melanoma metastases, with additional CXCL10 production seen by Sox10+ cells. Up to 90% of CD45+ cells and up to 69% of Sox10+ cells produced CXCL10 transcripts. The CXCL10 staining result was consistent with the level of CXCL10 expression determined by bulk RNA sequencing. The percentages of CD45+ CXCL10+ cells and Sox10+ CXCL10+ cells independently predicted response (p<0.001). The average number of transcripts per cell correlated with the CD45+ cell infiltrate (R=0.37). Immune cells and melanoma cells produce CXCL10 in human melanoma metastases. Intratumoral CXCL10 is a positive prognostic factor for response to immunotherapy, and the RNAscope technique is achievable using paraffin tissue. Strategies that support effector T cell recruitment via induction of CXCL10 should be considered as a mechanism-based intervention to expand immunotherapy efficacy.
LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation

Cellular and Molecular Gastroenterology and Hepatology

2016 Jun 22

Tsai YH, Hill DR, Kumar N, Huang S, Chin AM, Dye BR, Nagy MS, Verzi MP, Spence JR.
PMID: - | DOI: 10.1016/j.jcmgh.2016.06.002

Background & Aims

The Lgr family of transmembrane proteins (Lgr4, 5, 6) act as functional receptors for R-spondin proteins (Rspo 1, 2, 3, 4), and potentiate Wnt signaling in different contexts. Lgr5 is arguably the best characterized of the Lgr family members in a number of adult and embryonic of contexts in mice. However, the function ofLGR family members in early embryonic development is unclear, and has not been explored during human development or tissue differentiation in detail.

Methods

We interrogated the function and expression of LGR family members using human pluripotent stem cell–derived tissues including definitive endoderm, mid/hindgut, and intestinal organoids. We performed embryonic lineage tracing in Lgr5–creER–eGFP mice.

Results

We show that LGR5 is part of the human definitive endoderm (DE) gene signature, and LGR5 transcripts are induced robustly when human pluripotent stem cells are differentiated into DE. Our results show that LGR4and 5 are functionally required for efficient human endoderm induction. Consistent with data in human DE, we observe Lgr5 reporter (eGFP) activity in the embryonic day 8.5 mouse endoderm, and show the ability to lineage trace these cells into the adult intestine. However, gene expression data also suggest that there are human–mouse species-specific differences at later time points of embryonic development.

Conclusions

Our results show that LGR5 is induced during DE differentiation, LGR receptors are functionally required for DE induction, and that they function to potentiate WNT signaling during this process.

Human 3D Gastrointestinal Microtissue Barrier Function as a Predictor of Drug-Induced Diarrhea.

Toxicol Sci. 2018 Oct 26.

2018 Oct 26

Peters MF, Landry T, Pin C, Maratea K, Dick C, Wagoner MP, Choy AL, Barthlow H, Snow D, Stevens Z, Armento A, Scott CW, Ayehunie S.
PMID: 30364994 | DOI: 10.1093/toxsci/kfy268

Drug-induced gastrointestinal toxicities (GITs) rank among the most common clinical side effects. Preclinical efforts to reduce incidence are limited by inadequate predictivity of in vitro assays. Recent breakthroughs in in vitro culture methods support intestinal stem cell maintenance and continual differentiation into the epithelial cell types resident in the intestine. These diverse cells self-assemble into microtissues with in vivo-like architecture. Here, we evaluate human GI microtissues grown in transwell plates that allow apical and/or basolateral drug treatment and 96-well throughput. Evaluation of assay utility focused on predictivity for diarrhea since this adverse effect correlates with intestinal barrier dysfunction which can be measured in GI microtissues using transepithelial electrical resistance (TEER). A validation set of widely prescribed drugs was assembled and tested for effects on TEER. When the resulting TEER inhibition potencies were adjusted for clinical exposure, a threshold was identified that distinguished drugs that induced clinical diarrhea from those that lack this liability. Microtissue TEER assay predictivity was further challenged with a smaller set of drugs whose clinical development was limited by diarrhea that was unexpected based on one-month animal studies. Microtissue TEER accurately predicted diarrhea for each of these drugs. The label-free nature of TEER enabled repeated quantitation with sufficient precision to develop a mathematical model describing the temporal dynamics of barrier damage and recovery. This human 3D GI microtissue is the first in vitro assay with validated predictivity for diarrhea-inducing drugs. It should provide a platform for lead optimization and offers potential for dose schedule exploration.
Single-cell roadmap of human gonadal development

Nature

2022 Jul 01

Garcia-Alonso, L;Lorenzi, V;Mazzeo, CI;Alves-Lopes, JP;Roberts, K;Sancho-Serra, C;Engelbert, J;Marečková, M;Gruhn, WH;Botting, RA;Li, T;Crespo, B;van Dongen, S;Kiselev, VY;Prigmore, E;Herbert, M;Moffett, A;Chédotal, A;Bayraktar, OA;Surani, A;Haniffa, M;Vento-Tormo, R;
PMID: 35794482 | DOI: 10.1038/s41586-022-04918-4

Gonadal development is a complex process that involves sex determination followed by divergent maturation into either testes or ovaries1. Historically, limited tissue accessibility, a lack of reliable in vitro models and critical differences between humans and mice have hampered our knowledge of human gonadogenesis, despite its importance in gonadal conditions and infertility. Here, we generated a comprehensive map of first- and second-trimester human gonads using a combination of single-cell and spatial transcriptomics, chromatin accessibility assays and fluorescent microscopy. We extracted human-specific regulatory programmes that control the development of germline and somatic cell lineages by profiling equivalent developmental stages in mice. In both species, we define the somatic cell states present at the time of sex specification, including the bipotent early supporting population that, in males, upregulates the testis-determining factor SRY and sPAX8s, a gonadal lineage located at the gonadal-mesonephric interface. In females, we resolve the cellular and molecular events that give rise to the first and second waves of granulosa cells that compartmentalize the developing ovary to modulate germ cell differentiation. In males, we identify human SIGLEC15+ and TREM2+ fetal testicular macrophages, which signal to somatic cells outside and inside the developing testis cords, respectively. This study provides a comprehensive spatiotemporal map of human and mouse gonadal differentiation, which can guide in vitro gonadogenesis.
Targeted ablation of Lgr5-expressing intestinal stem cells in diphtheria toxin receptor-based mouse and organoid models

STAR protocols

2022 Jun 17

Lim, HYG;Yada, S;Barker, N;
PMID: 35620071 | DOI: 10.1016/j.xpro.2022.101411

Intestinal cells marked by Lgr5 function as tissue-resident stem cells that sustain the homeostatic replenishment of the epithelium. By incorporating a diphtheria toxin receptor (DTR) cassette linked to the Lgr5 coding region, native Lgr5-expressing cells are susceptible to ablation upon DT administration in vivo. A similar strategy can be used for Lgr5-expressing cells within organoids established from DTR models. Together, these in vivo and in vitro approaches will facilitate dissection of the roles of Lgr5-expressing cells residing in different tissue compartments. For complete details on the use and execution of this protocol, please refer to Tan et al. (2021).
Characterization of the immune response in ganglia after primary simian varicella virus infection.

J Neurovirol.

2015 Dec 16

Ouwendijk WJ, Getu S, Mahalingam R, Gilden D, Osterhaus AD, Verjans GM.
PMID: 26676825 | DOI: -

Primary simian varicella virus (SVV) infection in non-human primates causes varicella, after which the virus becomes latent in ganglionic neurons and reactivates to cause zoster. The host response in ganglia during establishment of latency is ill-defined. Ganglia from five African green monkeys (AGMs) obtained at 9, 13, and 20 days post-intratracheal SVV inoculation (dpi) were analyzed by ex vivo flow cytometry, immunohistochemistry, and in situ hybridization. Ganglia at 13 and 20 dpi exhibited mild inflammation. Immune infiltrates consisted mostly of CD8dim and CD8bright memory T cells, some of which expressed granzyme B, and fewer CD11c+ and CD68+ cells. Chemoattractant CXCL10 transcripts were expressed in neurons and infiltrating inflammatory cells but did not co-localize with SVV open reading frame 63 (ORF63) RNA expression. Satellite glial cells expressed increased levels of activation markers CD68 and MHC class II at 13 and 20 dpi compared to those at 9 dpi. Overall, local immune responses emerged as viral DNA load in ganglia declined, suggesting that intra-ganglionic immunity contributes to restricting SVV replication.

Pages

  • « first
  • ‹ previous
  • …
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • …
  • next ›
  • last »
X
Description
sense
Example: Hs-LAG3-sense
Standard probes for RNA detection are in antisense. Sense probe is reverse complent to the corresponding antisense probe.
Intron#
Example: Mm-Htt-intron2
Probe targets the indicated intron in the target gene, commonly used for pre-mRNA detection
Pool/Pan
Example: Hs-CD3-pool (Hs-CD3D, Hs-CD3E, Hs-CD3G)
A mixture of multiple probe sets targeting multiple genes or transcripts
No-XSp
Example: Hs-PDGFB-No-XMm
Does not cross detect with the species (Sp)
XSp
Example: Rn-Pde9a-XMm
designed to cross detect with the species (Sp)
O#
Example: Mm-Islr-O1
Alternative design targeting different regions of the same transcript or isoforms
CDS
Example: Hs-SLC31A-CDS
Probe targets the protein-coding sequence only
EnEmProbe targets exons n and m
En-EmProbe targets region from exon n to exon m
Retired Nomenclature
tvn
Example: Hs-LEPR-tv1
Designed to target transcript variant n
ORF
Example: Hs-ACVRL1-ORF
Probe targets open reading frame
UTR
Example: Hs-HTT-UTR-C3
Probe targets the untranslated region (non-protein-coding region) only
5UTR
Example: Hs-GNRHR-5UTR
Probe targets the 5' untranslated region only
3UTR
Example: Rn-Npy1r-3UTR
Probe targets the 3' untranslated region only
Pan
Example: Pool
A mixture of multiple probe sets targeting multiple genes or transcripts

Enabling research, drug development (CDx) and diagnostics

Contact Us
  • Toll-free in the US and Canada
  • +1877 576-3636
  • 
  • 
  • 
Company
  • Overview
  • Leadership
  • Careers
  • Distributors
  • Quality
  • News & Events
  • Webinars
  • Patents
Products
  • RNAscope or BaseScope
  • Target Probes
  • Controls
  • Manual assays
  • Automated Assays
  • Accessories
  • Software
  • How to Order
Research
  • Popular Applications
  • Cancer
  • Viral
  • Pathways
  • Neuroscience
  • Other Applications
  • RNA & Protein
  • Customer Innovations
  • Animal Models
Technology
  • Overview
  • RNA Detection
  • Spotlight Interviews
  • Publications & Guides
Assay Services
  • Our Services
  • Biomarker Assay Development
  • Cell & Gene Therapy Services
  • Clinical Assay Development
  • Tissue Bank & Sample Procurement
  • Image Analysis
  • Your Benefits
  • How to Order
Diagnostics
  • Diagnostics
  • Companion Diagnostics
Support
  • Getting started
  • Contact Support
  • Troubleshooting Guide
  • FAQs
  • Manuals, SDS & Inserts
  • Downloads
  • Webinars
  • Training Videos

Visit Bio-Techne and its other brands

  • bio-technie
  • protein
  • bio-spacific
  • rd
  • novus
  • tocris
© 2025 Advanced Cell Diagnostics, Inc.
  • Terms and Conditions of Sale
  • Privacy Policy
  • Security
  • Email Preferences
  • 
  • 
  • 

For Research Use Only. Not for diagnostic use. Refer to appropriate regulations. RNAscope is a registered trademark; and HybEZ, EZ-Batch and DNAscope are trademarks of Advanced Cell Diagnostics, Inc. in the United States and other countries. All rights reserved. ©2025 Advanced Cell Diagnostics, Inc.

 

Contact Us / Request a Quote
Download Manuals
Request a PAS Project Consultation
Order online at
bio-techne.com
OK
X
Contact Us

Complete one of the three forms below and we will get back to you.

For Quote Requests, please provide more details in the Contact Sales form below

  • Contact Sales
  • Contact Support
  • Contact Services
  • Offices

Advanced Cell Diagnostics

Our new headquarters office starting May 2016:

7707 Gateway Blvd.  
Newark, CA 94560
Toll Free: 1 (877) 576-3636
Phone: (510) 576-8800
Fax: (510) 576-8798

 

Bio-Techne

19 Barton Lane  
Abingdon Science Park
Abingdon
OX14 3NB
United Kingdom
Phone 2: +44 1235 529449
Fax: +44 1235 533420

 

Advanced Cell Diagnostics China

20F, Tower 3,
Raffles City Changning Office,
1193 Changning Road, Shanghai 200051

021-52293200
info.cn@bio-techne.com
Web: www.acdbio.com/cn

For general information: Info.ACD@bio-techne.com
For place an order: order.ACD@bio-techne.com
For product support: support.ACD@bio-techne.com
For career opportunities: hr.ACD@bio-techne.com

See Distributors
×

You have already Quick ordered an Item in your cart . If you want to add a new item , Quick ordered Item will be removed form your cart. Do You want to continue?

OK Cancel
Need help?

How can we help you?